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Abstract
A variational principle for mechanical systems and fields subject to
nonholonomic constraints is found, providing Chetaev-reduced equations as
equations for extremals. Investigating nonholonomic variations of the Chetaev
type and their properties, we develop foundations of the calculus of variations
on constraint manifolds, modelled as fibred submanifolds in jet bundles.
This setting is appropriate to study general first-order ‘nonlinear nonitegrable
constraints’ that locally are given by a system of first-order ordinary or partial
differential equations. We obtain an invariant constrained first variation formula
and constrained Euler–Lagrange equations both in intrinsic and coordinate
forms, and show that the equations are the same as Chetaev equations ‘without
Lagrange multipliers’, introduced recently by other methods. We pay attention
to two possible settings: first, when the constrained system arises from an
unconstrained Lagrangian system defined in a neighbourhood of the constraint,
and second, more generally, when an ‘internal’ constrained system on the
constraint manifold is given. In the latter case a corresponding unconstrained
system need not be a Lagrangian, nor even exist. We also study in detail an
important particular case: nonholonomic constraints that can be alternatively
modelled by means of (co)distributions in the total space of the fibred
manifold; in nonholonomic mechanics this happens whenever constraints affine
in velocities are considered. It becomes clear that (and why) if the distribution
is completely integrable (= the constraints are semiholonomic), the principle
of virtual displacements holds and can be used to obtain the constrained first
variational formula by a more or less standard procedure, traditionally used
when unconstrained or holonomic systems are concerned. If, however, the
constraint is nonintegrable, no significant simplifications are available. Among
others, some properties of nonholonomic systems are clarified that without a
deeper insight seem rather mysterious.
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1. Introduction

This paper is concerned with the problem of existence of a variational principle providing
nonholonomic equations of motion as equations for extremals. Similarly as in classical
mechanics of systems subject to holonomic constraints, motion equations of a Lagrangian
system in the presence of constraints depending on velocities can be investigated from a
‘mechanical’ and a ‘geometrical’ point of view. The former approach reflects the physical
understanding of constrained dynamics as motions in the original configuration space subject
to reactive forces expressing the constraints. Mathematically this leads to equations of motion
with Lagrange multipliers. In nonholonomic mechanics they take the form as follows, first
conjectured by Chetaev [4]:

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= μa

∂f a

∂q̇σ
, 1 � σ � m, (1.1)

where m is the dimension of the configuration space,

f a(t, qσ , q̇σ ) = 0, 1 � a � k < m, (1.2)

are equations of constraints, and μa are Lagrange multipliers. Chetaev equations have to
be solved simultaneously with equations of the constraints (1.2), providing in this way a
system of m + k mixed first- and second-order ODEs for m + k functions: constrained curves
c(t) = (qσ (t)) and Lagrange multipliers μa . Various geometric settings for Chetaev equations
are subject of many papers (e.g. [3, 6–10, 14, 23, 25, 26]), a recent generalization to field
theory is also available [1, 16, 30, 29].

We adopt the latter viewpoint reflecting a geometrical understanding of constrained
dynamics as motions on the constraint manifold. Mathematically the dynamics are
described as solutions of a reduced system of equations where the unknown reaction forces
are absent (equations ‘without Lagrange multipliers’, equivalent with Chetaev equations).
A geometric setting providing reduced equations is due to [24] (Lagrangian systems
subject to nonholonomic constraints in mechanics), [14] (general mechanical systems with
nonholonomic constraints) and [16, 19, 20] (field theory). In a frequent situation of a first-
order mechanical Lagrangian system subject to first-order nonholonomic constraints, reduced
equations read as follows:

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− La

(
∂cg

m−k+a

∂qs
− dc

dt

∂gm−k+a

∂q̇s

)
= 0, 1 � s � m − k, (1.3)

where the functions gm−k+a are defined by

q̇m−k+a = gm−k+a(t, qσ , q̇1, . . . , q̇m−k), 1 � a � k, (1.4)

i.e., (1.4) are equations of the constraints (1.2) in normal form, L̄ is the Lagrangian L restricted
to the constraint submanifold, La is a shorthand notation for

La = ∂L

∂q̇m−k+a
(t, qσ , q̇1, . . . , q̇m−k, gm−k+1, . . . , gm), (1.5)

and the ‘constraint derivative’ operators read

∂c

∂qs
= ∂

∂qs
+

∂gm−k+a

∂q̇s

∂

∂qm−k+a
,

(1.6)
dc

dt
= ∂

∂t
+

m−k∑
s=1

q̇s ∂

∂qs
+

k∑
a=1

gm−k+a ∂

∂qm−k+a
+

m−k∑
s=1

q̈s ∂

∂q̇s
.
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There is a natural question if nonholonomic equations (1.3) can be obtained from a
variational principle as corresponding equations for extremals (Euler–Lagrange equations).
It is well known that the standard variational principle does not apply to this situation. The
application of a variational procedure to nonholonomic linear and nonlinear constraints is
troublesome in many points (cf [2, 9, 22, 27]). Analysing the problem, it turns out that
answers to the following questions have to be found.

• How to generalize the principle of virtual displacements? We need a geometrically
satisfactory concept of ‘nonholonomic virtual displacements’ and reactive forces
compatible with the constraints.

• What are variations compatible with a nonholonomic constraint?
• What is a constrained Lagrangian system? Surprisingly, a ‘Lagrange function’ defined

on the constraint is not sufficient to obtain nonholonomic equations of motion. Moreover,
as found in [18], where a concept of variationality for nonholonomic systems has been
proposed, based on a relation between the Euler–Lagrange operator and the exterior
derivative, a non-Lagrangian system may become variational if subject to an appropriate
nonholonomic constraint.

In the present paper, we answer these questions and obtain a variational principle for
mechanical systems and fields subject to nonholonomic constraints. We stress that our point
of view is to consider dynamical systems given on a constraint manifold, and governed
by reduced equations as equations of motion. The results that might be rather surprising
appear through a careful analysis of basic concepts (such as variations, virtual displacements,
Lagrangians, etc) and the geometry of nonholonomic constraints.

In section 2 we recall from [11] how the invariant first variation formula on fibred
manifolds is obtained, suitable for description of unconstrained and holonomic Lagrangian
systems in mechanics and field theory. Keeping this procedure in mind, we can better
understand differences appearing due to the presence of nonholonomic constraints.

Solution of the nonholonomic variations problem needs a deeper understanding of first-
order differential constraints and related geometric structures. We study differential forms and
vector fields on nonholonomic submanifolds in section 3, and prove a ‘constraint version’ of the
theorem on decomposition of differential forms into contact components. We also generalize
the prolongation of vector fields to the constrained situation. Techniques we develop are
used in the next section to obtain and prove the results on constrained variations. The key
to a correct concept of nonholonomic virtual displacements, or admissible variations, is the
canonical distribution [14, 16, 23]; we recall it in section 3.3.

In the last section we develop foundations of the calculus of variations on constraint
manifolds. Our setting is appropriate to study general first-order ‘nonlinear nonitegrable
constraints’ that locally are given by a system of first-order ordinary or partial differential
equations. We obtain an invariant constrained first variation formula and the corresponding
equations for extremals (‘constrained Euler–Lagrange equations’) both in intrinsic and
coordinate forms, and show that, indeed, the latter equations are the same as Chetaev-reduced
equations ‘without Lagrange multipliers’.

It is important to stress that we pay attention to two possible settings: first, when
the constrained system arises from an unconstrained Lagrangian system defined in a
neighbourhood of the constraint, and second, more general, when an ‘internal’ constrained
system on the constraint manifold is given. In the latter case a corresponding unconstrained
system need not be Lagrangian, or even need not exist. (In this context, we recall the interested
reader that necessary and sufficient conditions on ‘constraint variationality’, generalizing the
famous Helmholtz conditions, have been obtained in [18]).
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We also study in detail an important particular case: nonholonomic constraints that can be
alternatively modelled by means of (co)distributions in the total space of the fibred manifold.
In nonholonomic mechanics this happens whenever constraints are affine in velocities [14], in
field theory, however, the situation is not so simple [16]. It becomes clear that (and why) if
the distribution is completely integrable, i.e., the constraints are semiholonomic, the principle
of virtual displacements holds and can be used to obtain the constrained first variational
formula by a more or less standard procedure, traditionally used when unconstrained or
holonomic systems are concerned. If, however, the constraint is nonintegrable, we shall see
that remarkable simplifications are no longer available, and the ‘general approach’ has to be
applied.

In the last section we illustrate the nonholonomic variational principle on a few examples,
and discuss in detail main differences compared with a traditional approach and expectations
based on experience with unconstrained and holonomic systems.

To give insight into the nonholonomic variation procedure for the moment, let us consider
an easy example of a free particle moving in R

3 under a nonintegrable constraint on velocity.
The unconstrained motion can be described by sections of the fibred manifold R × R

3 → R,
(i.e., by graphs of curves in R

3), and comes from the Lagrangian 1-form λ = L dt , defined on
R × T R

3, where

L = 1
2mv2. (1.7)

Variations of curves in R
3 are generated by vector fields

∂

∂x
,

∂

∂y
,

∂

∂z
, (1.8)

and induce variations of prolonged curves in the evolution space T R
3, generated by

prolongations of the variation vector fields in R
3, providing the Euler–Lagrange equations

mẍ = 0, mÿ = 0, mz̈ = 0. (1.9)

It is important to note that the same result is obtained if in the action function the Cartan form

�λ = − 1
2mv2 dt + mẋ dx + mẏ dy + mż dz, (1.10)

in place of the Lagrangian L dt is considered. Assume a nonholonomic constraint given by
equation

v2 = t, t > 0, (1.11)

or, in a normal form,

ż = g ≡
√

t − ẋ2 − ẏ2. (1.12)

This equation defines a submanifold ι : Q → R × T R
3 of codimension one in R × T R

3. In
Q the constrained dynamics take place; hence Q has the meaning of a genuine evolution space
for the constrained system. The manifold Q carries the canonical distribution that determines
admissible ‘virtual displacements’; it is annihilated by 1-form

− t

g
dt +

ẋ

g
dx +

ẏ

g
dy + dz. (1.13)

The constrained variation principle will concern variations of graphs of curves in this
submanifold. We shall show that the constrained action function comes from the 1-form

ι∗�λ = − 1
2mt dt + mẋ dx + mẏ dy + mg dz, (1.14)

and that the constrained variations are generated by vector fields
∂

∂x
− ẋ

g

∂

∂z
,

∂

∂y
− ẏ

g

∂

∂z
(1.15)
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(tangent to Q). Note that these variations do not come from variations in R × R
3–a typical

property of nonholonomic constraints. As a result we then obtain constrained Euler–Lagrange
equations that in this case take the following form:

mẍ

(
1 +

ẋ2

g2

)
+

mẋẏ

g2
ÿ − mẋ

2g2
= 0, mÿ

(
1 +

ẏ2

g2

)
+

mẋẏ

g2
ẍ − mẏ

2g2
= 0. (1.16)

2. A reminder of the first variation formula on fibred manifolds

In what follows, we consider smooth manifolds and mappings. In coordinate formulae,
summation over repeated indices applies.

Let π : Y → X be a fibred manifold with an orientable base X, dim X = n �
1, dim Y = n + m (m � 1). We denote by πr : J rY → X the r-jet prolongation of π ,
and πr,s : J rY → J sY, r > s � 0, the canonical jet projections. For the sake of simplicity of
notations we also consider r = 0 and write Y = J 0Y, π = π0, etc. In this paper, we mostly
use the first and second jet prolongations, J 1Y and J 2Y .

If dim X = 1, local fibred coordinates on Y and the associated coordinates on J rY

are denoted by (t, qσ ), and
(
t, qσ , qσ

1 , . . . , qσ
r

)
, respectively; if, in particular r � 2,

we write (t, qσ , q̇σ , q̈σ ). In the case of dim X > 1 we use notation (xi, yσ ), and(
xi, yσ , yσ

j1
, . . . , yσ

j1...jr

)
, where 1 � σ � m, 1 � i, j1, . . . , jr � n, j1 � · · · � jr .

A mapping δ : X → J rY defined on an open set U ⊂ X is called a section of πr

if πr ◦ δ = idU . Sections of π can be prolonged to sections of πr, r � 1. Recall that
if γ is a section of π , in fibred coordinates γ (t) = (t, γ σ (t)) (resp. γ (xi) = (xi, γ (xi)),
then J rγ is a section of πr, J

rγ (t) = (t, γ σ (t), dγ σ /dt, . . . , drγ σ /dt r ) (resp. J rγ (xi) =
(xi, γ σ (xi), ∂γ σ /∂xi, . . . , ∂rγ σ /∂xi1 · · · ∂xir )).

A section δ of πr is called holonomic if δ = J rγ for a section γ of π .
A form η on J rY is called contact if J rγ ∗η = 0 for every section γ of π . η is called

horizontal or 0-contact if iξ η = 0 for every πr -vertical vector field ξ on J rY . For 1 � k � q,
a contact q-form η is called k-contact if for every πr -vertical vector field ξ on J rY, iξ η is
(k − 1)-contact. By Krupka’s decomposition theorem, every q-form η on J rY is canonically
decomposed into a sum of uniquely determined q-forms on J r+1Y , a horizontal form hη, 1-
contact form p1η, . . . , q-contact form pqη, called the horizontal, 1-contact, . . . , q-contact
component of η, respectively [11]. Hence,

π∗
r+1,rη = hη + p1η + · · · + pqη. (2.1)

For a function, f , this formula gives us

π∗
r+1,r df = h df + p1 df, (2.2)

where h d and p1 d are the horizontal derivative and the contact derivative operator,
respectively. In fibred coordinates, components of h d are the well-known total derivative
operators

if dim X = 1:
d

dt
= ∂

∂t
+

r∑
k=0

qσ
k+1

∂

∂qσ
k

,

(2.3)

if dim X > 1:
d

dxi
= ∂

∂xi
+

r∑
k=0

yσ
j1···jki

∂

∂yσ
j1···jk

, 1 � i � n.

Components of p1 d are partial derivatives, ∂/∂qσ
k , 0 � k � r , resp. ∂/∂yσ

j1...jk
, 0 � k � r .
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Vector fields on Y that are π -projectable (i.e., their projection is a vector field on X) admit
prolongations to vector fields on J rY, r � 1. Recall that, in fibred coordinates, if

ξ = ξ 0 ∂

∂t
+ ξσ ∂

∂qσ
, resp. ξ = ξ j ∂

∂xj
+ ξσ ∂

∂yσ
, (2.4)

(where ξ 0 = ξ 0(t), resp. ξ j = ξ j (xi)) then

J rξ = ξ +
r∑

k=1

ξσ
k

∂

∂qσ
k

, resp. J rξ = ξ +
r∑

k=1

ξσ
j1···jk

∂

∂yσ
j1···jk

, (2.5)

where the higher components take the form

ξσ
k = dξσ

k−1

dt
− qσ

k

dξ 0

dt
, resp. ξσ

j1···jk−1i
= dξσ

j1···jk−1

dxi
− yσ

j1···jk−1l

∂ξ l

∂xi
. (2.6)

We note that prolonged vector fields are symmetries of the contact ideal.
Throughout the paper we use the following shorthand notation:

ω0 = dx1 ∧ · · · ∧ dxn, ωi = i∂/∂xi ω0,

and

if dim X = 1: ωσ = dqσ − q̇σ dt, ω̇σ = dq̇σ − q̈σ dt,

if dim X > 1: ωσ = dyσ − yσ
j dxj , ωσ

i = dyσ
i − yσ

ij dxj .

A dynamical form E of order 2 is defined to be a 1-contact form on J 2Y , horizontal with
respect to the projection onto Y. In fibred coordinates, E = Eσωσ ∧ω0, where Eσ , 1 � σ � m,
are functions on an open subset of J 2Y . Second-order dynamical forms represent systems of
second-order differential equations, ordinary if dim X = 1 and partial if dim X = n > 1, for
sections of the fibred manifold π .

Let us briefly recall some concepts and results on the first-order variational calculus on
fibred manifolds, due to Krupka [11] (see also [12] or [13]).

A first-order Lagrangian is a horizontal n-form λ on J 1Y . In fibred coordinates λ = Lω0,
where L is a function on an open subset of J 1Y . A Lepage equivalent of λ is an n-form ρ

such that hρ = λ and p1 dρ is a dynamical form. If dim X = 1 then λ has a unique Lepage
equivalent, the well-known Cartan form,

�λ = L dt +
∂L

∂q̇σ
ωσ . (2.7)

For dim X > 1 a Lepage equivalent is no longer unique; the family of Lepage equivalents of
λ takes the form

ρ = �λ + dν + μ, (2.8)

where

�λ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj (2.9)

is the Poincaré–Cartan form, ν is an arbitrary contact (n − 1)-form and μ is an arbitrary at
least 2-contact form. It has to be stressed, however, that the (n + 1)-form p1 dρ depends only
upon the horizontal part λ of ρ, i.e. is the same for all Lepage equivalents of the Lagrangian
λ; it is called the Euler–Lagrange form of λ, and denoted by Eλ.

The procedure providing the ‘unconstrained’ invariant first variation formula and Euler–
Lagrange equations on fibred manifolds can be summarized as follows.

6
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Let � be a piece of X (i.e., a compact connected n-dimensional submanifold of X with
boundary). Denote by S�(π) the set of sections of π , domains of which are neighbourhoods
of �. Given a Lagrangian λ on J 1Y , the function

Sλ,� : S�(π) � γ →
∫

�

J 1γ ∗λ ∈ R (2.10)

is called the action function of λ over �.
Note that since we are interested in critical paths in Y, the action of any n-form η, such

that hη = λ, coincides with the action of the Lagrangian λ. In particular, over every piece �

of X, the action of λ is the same as the action of any of the Lepage equivalents ρ of λ,

Sλ,� = Sρ,�. (2.11)

To get a correct concept of variation (1-parametric deformation) of a section γ ∈ S�(π),
one has to consider π -projectable vector fields on Y. The point is that such vector fields transfer
sections into sections: if ξ is a projectable vector field on Y and ξ0 (on X) is its projection, and
{φu}, resp. {φ0u} are the corresponding local 1-parameter groups, we get a 1-parameter family
of sections, γu = φuγφ−1

0u , defined in a neighbourhood of φ0u(�), and called variation of the
section γ induced by ξ . Thus, for a fixed section γ and a fixed ‘variation vector field’ ξ we
get a real function

u →
∫

φ0u(�)

J 1γ ∗
u λ. (2.12)

The arising function

δSλ,� : S�(π) � γ →
(

d

du

∫
φ0u(�)

J 1γ ∗
u λ

)
u=0

=
∫

�

J 1γ ∗L
J1ξ

λ ∈ R (2.13)

is called the first variation of the action function of the Lagrangian λ over �, induced by ξ , or
the first variational derivative of Sλ,� by ξ . It should be stressed that since the operator L

J1ξ

preserves the decomposition of forms into the horizontal and contact components, we have
also

δSλ,� = δSρ,� (2.14)

for every Lepage equivalent ρ of λ. Explicitly,∫
�

J 1γ ∗L
J1ξ

λ =
∫

�

J 1γ ∗L
J1ξ

ρ. (2.15)

The first variation formula is a decomposition of the above integral into a sum of two terms
such that the first one does not depend upon ‘derivations of variations’ (the Euler–Lagrange
term) and the second one is a boundary term. With Lepage forms the decomposition is available
in an invariant (geometric) way simply by using Cartan’s formula for the Lie derivative of ρ.
The first variation formula then can be stated either in the integral form as∫

�

J 1γ ∗L
J1ξ

λ =
∫

�

J 1γ ∗iJ 1ξ dρ +
∫

�

J 1γ ∗diJ 1ξρ

=
∫

�

J 1γ ∗iJ 1ξ dρ +
∫

∂�

J 1γ ∗iJ 1ξρ, (2.16)

or in the infinitesimal form

L
J1ξ

λ = hiJ 1ξ dρ + h diJ 1ξ ρ. (2.17)

7
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Note that due to properties of Lepage forms (up to a projection) hiJ 1ξ dρ = hiJ 2ξp1 dρ =
hiJ 2ξEλ, so that indeed, the first term on the right-hand side of the first variation formula is
the Euler–Lagrange term, and we may equivalently write∫

�

J 1γ ∗L
J1ξ

λ =
∫

�

J 2γ ∗iJ 2ξEλ +
∫

∂�

J 1γ ∗iJ 1ξρ, (2.18)

or

L
J1ξ

λ = hiJ 2ξEλ + h diJ 1ξρ. (2.19)

From the above form of the first variation formula it is immediately seen that the first
variation formula does not depend upon a choice of the Lepage equivalent ρ of λ, i.e. it reads

L
J1ξ

λ = hiJ 2ξEλ + h diJ 1ξ�λ. (2.20)

Consequently, also the ‘boundary term’ providing conserved currents is completely determined
by the Lagrangian. This can easily be seen also by a direct computation as follows: since
ρ = �λ + dν + μ, where ν is contact and μ is at least 2-contact, we get

h diJ 1ξρ = h diJ 1ξ�λ + h diJ 1ξ dν, (2.21)

since diJ 1ξμ is contact as the exterior derivative of a contact form. Moreover,

h diJ 1ξ dν = hLJ 1ξ dν = 0, (2.22)

since dν is contact and LJ 1ξ preserves contact forms.
A section γ of π is called an extremal of λ on � if the first variation of the action of λ on

� vanishes for every vertical vector field ξ on Y with the support in π−1(�) (such a vector
field is often called a fixed-endpoints variation). γ is called extremal of λ if it is an extremal
on every piece � ⊂ X.

Equations for extremals of a Lagrangian are called Euler–Lagrange equations. Using the
first variation formula, it can be proved that they are as follows [11].

Theorem 2.1. Let λ be a Lagrangian on J 1Y . A section γ of π is an extremal of λ, if and
only if γ satisfies one of the following equivalent conditions.

(1) Eλ ◦ J 2γ = 0.
(2) For every vertical vector field ξ on Y, J 1γ ∗iJ 1ξ dρ = 0, where ρ is (any) Lepage equivalent

of λ.
(3) For every projectable vector field ξ on Y, J 1γ ∗iJ 1ξ dρ = 0, where ρ is (any) Lepage

equivalent of λ.
(4) For every vector field ζ on J 1Y , J 1γ ∗iζ dρ = 0, where ρ is (any) Lepage equivalent of λ.
(5) In every fibred chart (xi, yσ ) on Y, γ satisfies the system of differential equations

∂L

∂yσ
− d

dxj

∂L

∂yσ
j

= 0, 1 � σ � m. (2.23)

Remark 2.2. Note that the above variational principle applies to unconstrained systems and
to systems with holonomic constraints (indeed, geometrically, a holonomic constraint in Y is
a fibred submanifold π |Q : Q → X of the fibred manifold π : Y → X).

Before turning to a possible generalization to nonholonomic systems, let us stress two
remarkable points appearing in the variation procedure:

8
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• Virtual displacements. The geometric setting gives a justification and precise formulation
to an ‘obvious fact’ that ‘derivations of variations are variations of derivations’, observed
and used in classical mechanics of unconstrained systems and systems with holonomic
constraints. Indeed, in the above geometric language this statement means nothing but
the elementary property that for any variation {γu} of a section γ of π : Y → X

J 1(γu) = (J 1γ )u (2.24)

for all admissible values of the parameter u.
Another formulation of the same property can be given in terms of ‘virtual displacements’
appearing in D’Alembert’s principle: since infinitesimal virtual displacements are
represented by vertical vector fields on Y (resp. on the holonomic constraint submanifold
Q ⊂ Y ), induced virtual displacements in J 1Y (resp. in J 1Q) are prolongations of these
vector fields.

• Lepage forms. For a Lagrangian system, the action is

S�(π) � γ →
∫

�

J 1γ ∗ρ ∈ R, (2.25)

where ρ is a Lepage form. The pleasant fact that ρ can be replaced by its horizontal part
(Lagrangian λ) is a favourable feature of the prolongation structure of the manifold J 1Y

(resp. J 1Q).

3. Nonholonomic constraints

3.1. Constraint submanifolds in jet bundles

By a nonholonomic constraint in J 1Y we mean a submanifold Q ⊂ J 1Y , fibred over Y. This
means that we have the fibred manifolds π̄1,0 : Q → Y where π̄1,0 is the restriction of the
projection π1,0 : J 1Y → Y to Q, and π̄1 : Q → X, where π̄1 = π1|Q. We also use the explicit
notation ι : Q → J 1Y for the canonical embedding and write

q̇σ ◦ ι = gσ , respectively, yσ
j ◦ ι = gσ

j . (3.1)

By definition of Q,

rank

(
∂gσ

∂q̇ν

)
= m − k, rank

(
∂gσ

j

∂yν
k

)
= nm − κ, (3.2)

where k, resp. κ is the codimension of Q (we exclude the cases k = m, κ = nm when Q is the
image of a section of J 1Y → Y—trivial fibres).

The contact ideal on J 1Y gives rise on Q to the induced contact ideal, consisting of
pullbacks by ι to Q of contact forms on J 1Y . The contact ideal on Q is generated by 1-forms

ω̄σ = ι∗ωσ , 1 � σ � m, (3.3)

and their exterior derivatives.
If dim X = 1, then a constraint Q ⊂ J 1Y of codimension k (1 � k < m) is locally

defined by a system of k first-order ordinary differential equations

f a(t, qσ , q̇σ ) = 0, 1 � a � k, (3.4)

where the functions f a satisfy the rank condition

rank

(
∂f a

∂q̇σ

)
= k, (3.5)

9
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or, equivalently, by equations ‘in normal form’

q̇m−k+a = gm−k+a(t, qσ , q̇1, . . . , q̇m−k), 1 � a � k. (3.6)

Hence, the embedding ι is explicitly given by equations

q̇s ◦ ι = q̇s , 1 � s � m − k, q̇m−k+a ◦ ι = gm−k+a, 1 � a � k. (3.7)

On the submanifold Q we have adapted coordinates (t, qσ , q̇s), where 1 � s � m − k.
If dim X = n > 1, then a constraint Q ⊂ J 1Y of codimension κ (1 � κ < nm) is locally

defined by a system of κ first-order partial differential equations

f α(xi, yσ , yσ
j ) = 0, 1 � α � κ, (3.8)

where the functions f α satisfy the rank condition

rank

(
∂f α

∂yσ
j

)
= κ, (3.9)

where 1 � α � κ number rows and σ, j, 1 � σ � m, 1 � j � n number columns.
Adapted coordinates on Q are denoted by (xi, yσ , zJ ), 1 � J � mn − κ . Here zJ

stands for the coordinates y
p

l for appropriate p’s from the set {1, 2, . . . , m} and l’s from the
set {1, 2, . . . , n}; let us denote this set of pairs of admissible indices by J . Note that due to
the rank condition (3.9) equations f α = 0 are locally equivalent to κ equations of the form
yσ

j = gσ
j (xi, yν, zJ ) for (σ, j) /∈ J (cf (3.2)).

Constraints can be naturally prolonged to higher order jets. The first prolongation Q̂ of the
constraint Q is a submanifold in J 2Y , consisting of all points J 2

x γ such that J 1
x γ ∈ Q, x ∈ X.

Locally Q̂ is defined by the equations of the constraint and their derivatives, precisely,

f a = 0,
df a

dt
= 0, 1 � a � k, (3.10)

respectively, in normal form,

q̇m−k+a = gm−k+a, q̈m−k+a = dgm−k+a

dt
, (3.11)

if dim X = 1, and

f α = 0,
df α

dxi
= 0, 1 � α � κ, 1 � i � n, (3.12)

respectively,

yσ
j = gσ

j , yσ
jl = dgσ

j

dxl
, (σ, j) /∈ J , 1 � l � n (3.13)

if dim X = n. Note that generally yσ
jl 
= yσ

lj .

We also use notation ι̂ : Q̂ → J 2Y for the canonical embedding. The manifold Q̂ is fibred
over Q,Y and X, the fibred projections are simply restrictions of the corresponding canonical
projections of the underlying fibred manifolds. We write π̄2 : Q̂ → X, π̄2,1 : Q̂ → Q and
π̄2,0 : Q̂ → Y . On Q̂ we use adapted fibred coordinates, denoted by (t, qσ , q̇s , q̈s), 1 � σ �
m, 1 � s � m − k if dim X = 1 and by

(
xi, yσ , zJ , zJ

j

)
if dim X = n.

In what follows, whenever using coordinates on Q or Q̂, we mean adapted coordinates
of this kind.

On Q̂ there arises the induced contact ideal generated by the 1-forms

ω̄s = dqs − q̇s dt, ω̄m−k+a = dqm−k+a − gm−k+a dt, ω̂s = dq̇s − q̈s dt, (3.14)

respectively,

ω̄σ = dyσ − gσ
j dxj , ω̂J = dzJ − zJ

j dxj , (3.15)

and their exterior derivatives.
We have a natural concept of a contact symmetry on Q, resp. Q̂, as a vector field on Q,

resp. Q̂, that is a symmetry of the induced contact ideal.

10
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3.2. Vector fields and differential forms on constraint submanifolds

The contact structure on the constraint and its prolongations enable us to consider constrained
prolongations of vector fields as follows: let ξ be a vector field on Y. We call a vector field ζ

on Q the first constrained prolongation of ξ , and denote it by J 1
c ξ , if ζ is a contact symmetry

on Q and T π̄1,0 · ζ = ξ ◦ π̄1,0. Similarly, we call ζ̂ on Q̂ the second constrained prolongation
of ξ , and denote it by J 2

c ξ , if ζ̂ is a contact symmetry on Q̂ and T π̄2,0 · ζ̂ = ξ ◦ π̄2,0.
Also modules of differential forms on constraint manifolds inherit an additional structure

due to the existence of the fibred and contact structure.
A q-form η on Q is called horizontal with respect to the projection π̄1 if iζ η = 0 for

every π̄1-vertical vector field ζ on Q. Quite similarly we define horizontality with respect to
the projection π̄1,0 onto Y, and several concepts of horizontality for forms on Q̂ (note that one
has forms, horizontal with respect to the projection π̄2 onto X, π̄2,0 onto Y and finally π̄2,1

onto Q).
By recurrence, a contact q-form η on Q (respectively, on Q̂) is called i-contact,

i = 1, 2, . . . , q, if for every π̄1-vertical vector field ζ on Q (respectively, π̄2-vertical vector
field ζ on Q̂) the contraction of η by ζ is (i − 1)-contact (here 0-contact means horizontal
with respect to the projection onto X).

We have structure theorems, similar to the decomposition theorem in the unconstrained
case:

Theorem 3.1. Let q � 1.

(i) Denote by �
q

Q(Q̂) the module of q-forms on Q̂ that are horizontal with respect to the

projection π̄2,1 onto Q, and by �
q−i,i

Q (Q̂) its submodules of π̄2-horizontal (i = 0) and
i-contact forms (i = 1, 2, . . . , q). Then

�
q

Q(Q̂) = �
q,0
Q (Q̂) ⊕ �

q−1,1
Q (Q̂) ⊕ · · · ⊕ �

0,q

Q (Q̂). (3.16)

This means that every form η̂ ∈ �
q

Q(Q̂) is in a unique way decomposed into the sum of a
horizontal form and i-contact forms, i = 1, 2, . . . q.

(ii) With analogous notations as above,

�
q

Y (Q) = �
q,0
Y (Q) ⊕ �

q−1,1
Y (Q) ⊕ · · · ⊕ �

0,q

Y (Q). (3.17)

In view of the above theorem we can consider for every q � 1 the projectors of the
module �

q

Q(Q̂) onto the particular submodules in the decomposition (3.16). We denote

h̄ : �
q

Q(Q̂) → �
q,0
Q (Q̂), and p̄i : �

q

Q(Q̂) → �
q−i,i

Q (Q̂), 1 � i � q, and speak about the

horizontal and i-contact component of a form η̂ ∈ �
q

Q(Q̂).

Since, in particular, for every q-form η on Q its lift π̄∗
2,1η belongs to �

q

Q(Q̂), we obtain
the following corollary.

Corollary 3.2. For every q-form η on Q one has a unique decomposition into a sum of a
π̄2-horizontal form and i-contact forms, i = 1, 2, . . . q, on Q̂ as follows:

π̄∗
2,1η = h̄η + p̄1η + · · · + p̄qη. (3.18)

Proof. The proof of the theorem is based on transformation properties of horizontal and
contact forms on Q̂. It is convenient to work in the basis of 1-forms on Q̂, adapted to the
induced contact structure, that is,

(
dxi, ω̄σ , ω̂J , dzJ

j

)
. The condition η̂ ∈ �

q

Q(Q̂) means that
the coordinate expression of η̂ does not contain the differentials dzJ

j . Hence, in a chart, η̂

is expressed as a sum of the following q-forms: η̂0 containing wedge products of the dxi’s

11



J. Phys. A: Math. Theor. 42 (2009) 185201 O Krupková

only, η̂1 that is a sum of forms containing the wedge product of q − 1 dxi’s and exactly
one of the contact 1-forms ω̄σ , ω̂J , η̂2 being a sum of terms that contain the wedge product
with exactly two of the forms ω̄σ , ω̂J , etc, up to η̂q that contains the wedge products of q of
the ω̄σ , ω̂J ’s. Obviously, η̂0 is a horizontal form, η̂1 is 1-contact, etc. The decomposition
η̂ = η̂0 + η̂1 + · · · + η̂q is, however, invariant with respect to fibred coordinate transformations
(the number of ω̄σ , ω̂J ’s in a wedge product of dxi’s, ω̄σ ’s and ω̂J ’s does not change). �

Applying the above corollary to (locally) exact 1-forms on Q gives an invariant splitting
of the exterior derivative d to the horizontal and contact part, π̄∗

2,1 d = h̄ d + p̄1d. The operator
h̄ d has n = dim X components as follows,

dc

dt
= ∂

∂t
+ q̇s ∂

∂qs
+ gm−k+a ∂

∂qm−k+a
+ q̈s ∂

∂q̇s
, (3.19)

respectively,

dc

dxi
= ∂

∂xi
+ gσ

i

∂

∂yσ
+ zJ

i

∂

∂zJ
, (3.20)

and is called the constraint total derivative.
For convenience of notations we also put

d′
c

dt
= ∂

∂t
+ q̇s ∂

∂qs
+ gm−k+a ∂

∂qm−k+a
,

d′
c

dxi
= ∂

∂xi
+ gσ

i

∂

∂yσ
. (3.21)

With the help of notations introduced above it is easy to write explicit formulae for a
vector field J 1

c ξ . For dim X = 1 we obtain the following result (if dim X > 1, the formulae
are more complicated, however, the computation is straightforward):

Theorem 3.3. Let dim X = 1. A projectable vector field ξ on Y,

ξ = ξ 0 ∂

∂t
+ ξσ ∂

∂qσ
, (3.22)

admits prolongation to Q if and only if

d′
cξ

m−k+a

dt
− ∂gm−k+a

∂qm−k+b
ξm−k+b = ∂gm−k+a

∂t
ξ 0 +

∂gm−k+a

∂ql
ξ l

+
∂gm−k+a

∂q̇l

d′
cξ

l

dt
+

(
gm−k+a − ∂gm−k+a

∂q̇l
q̇ l

)
d′

cξ
0

dt
. (3.23)

Then

J 1
c ξ = ξ +

(
d′

cξ
l

dt
− q̇ l d′

cξ
0

dt

)
∂

∂q̇l
. (3.24)

It is obvious how to consider higher order prolongations of a constraint Q ⊂ J 1Y , and
how to treat horizontal and contact forms in the higher order situation. In this paper, however,
higher order constraint structures will not be needed.

3.3. The canonical distribution

As discovered in [14] and [23] for mechanics and in [16] for field theory, every nonholonomic
constraint Q ⊂ J 1Y carries a natural structure, called the canonical distribution, denoted by C.
It should be stressed that this structure gives a geometric meaning to ‘virtual displacements’ in

12
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the space of positions and velocities, and to the concept of ‘reactive forces’ (see [14] and [16]
for a nonholonomic D’Alembert’s principle and introduction and study of Chetaev forces).

Mechanics. If dim X = 1 then the canonical distribution is a corank k distribution on Q, where
k = codimQ, annihilated by the following system of k linearly independent smooth contact
1-forms:

ϕa =
(

∂f a

∂q̇σ
◦ ι

)
ω̄σ = ω̄m−k+a −

m−k∑
s=1

∂gm−k+a

∂q̇s
ω̄s, 1 � a � k. (3.25)

Note that the condition rankC = constant means that C → Q is a bundle over Q (a subbundle
of the tangent bundle T Q → Q); it is also called the Chetaev bundle.

The ideal in the exterior algebra on Q generated by the 1-forms ϕa, 1 � a � k, is called
the constraint ideal, and is denoted by I(C0). Differential forms belonging to the constraint
ideal are called constraint forms.

Equivalently, the canonical distribution can locally be spanned by a system of 2(m−k)+1
smooth vector fields on Q:

∂c

∂t
≡ ∂

∂t
+

k∑
a=1

(
gm−k+a −

m−k∑
l=1

∂gm−k+a

∂q̇l
q̇ l

)
∂

∂qm−k+a

∂c

∂qs
≡ ∂

∂qs
+

k∑
a=1

∂gm−k+a

∂q̇s

∂

∂qm−k+a
, 1 � s � m − k, (3.26)

∂

∂q̇s
, 1 � s � m − k.

In what follows, we shall call vector fields belonging to the canonical distribution Chetaev
vector fields. Note that every Chetaev vector field takes the form

Z = Z0 ∂c

∂t
+

m−k∑
s=1

Zs ∂c

∂qs
+

m−k∑
s=1

Z̃s ∂

∂q̇s

= Z0 ∂

∂t
+

m−k∑
s=1

Zs ∂

∂qs

+
k∑

a=1

(
Z0gm−k+a +

m−k∑
s=1

(Zs − Z0q̇s)
∂gm−k+a

∂q̇s

)
∂

∂qm−k+a
+

m−k∑
s=1

Z̃s ∂

∂q̇s
, (3.27)

where the components Z0, Zs, Z̃s of Z are functions of the variables (t, qσ , q̇s), 1 � σ �
m, 1 � s � m − k, on Q.

It is immediately seen that the family of Chetaev vector fields need not contain vector fields
projectable onto Y. Moreover, the canonical distribution C need not contain prolongations of
vector fields defined on Y, even if it is projectable.

Remarkably, the following theorem holds, first observed and proved in [14].

Theorem 3.4. The constraint Q is given by equations affine in the first derivatives if and only if
the canonical distribution on Q is π̄1,0-projectable (i.e., the projection D of C is a distribution
on Y).

13
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Note that in the affine case, if we denote gm−k+a = Aa +Ba
s q̇s , the distribution D is locally

spanned by vector fields

∂

∂t
+

k∑
a=1

Aa ∂

∂qm−k+a
,

∂

∂qs
+

k∑
a=1

Ba
s

∂

∂qm−k+a
, 1 � s � m − k, (3.28)

or, annihilated by 1-forms Aa dt + Ba
s dqs − dqm−k+a, 1 � a � k.

An important particular case concerns semiholonomic constraints, properties of which
can be summarized as follows [14, 15].

Theorem 3.5. Given a nonholonomic constraint Q ⊂ J 1Y , the following conditions are
equivalent:

(1) Q is semiholonomic.
(2) The canonical distribution C on Q is completely integrable.
(3) C on Q is projectable onto Y, and its projection D = T π̄1,0.C is completely integrable.
(4) The constraint ideal I(C0) is closed.
(5) Functions gm−k+a defining locally the constraint satisfy

Ec(gm−k+a) = 0, 1 � a � k, (3.29)

where Ec denotes the C-modified Euler–Lagrange operator, in components defined as
follows:

Ec
s = ∂c

∂qs
− dc

dt

∂

∂q̇s
, 1 � s � m − k, (3.30)

where
dc

dt
= ∂c

∂t
+ q̇s ∂c

∂qs
+ q̈s ∂

∂q̇s
. (3.31)

(6) Functions gm−k+a defining locally the constraint are affine in velocities and satisfy

E ′c(gm−k+a) = 0, 1 � a � k, (3.32)

where

E ′c
s = ∂c

∂qs
− d′

c

dt

∂

∂q̇s
, 1 � s � m − k. (3.33)

Above, d′
c/dt = dc/dt − q̈s∂c/∂q̇s .

An easy computation with the help of theorem 3.3 gives us that for semiholonomic
constraints, the projections of vector fields ∂c/∂t and ∂c/∂ql, 1 � l � m − k, admit the
prolongation to Q. This means that vector fields J 1(T π̄1,0 · ∂c/∂t) and J 1(T π̄1,0 · ∂c/∂ql) are
along Q tangent to Q, and belong to the distribution C. Indeed, computing the prolongation
condition of theorem 3.3 we obtain in the case of ∂c/∂ql and ∂c/∂t , respectively:

d′
c

dt

∂gm−k+a

∂q̇l
− ∂gm−k+a

∂qm−k+b

∂gm−k+b

∂q̇l
− ∂gm−k+a

∂ql
= d′

c

dt

∂gm−k+a

∂q̇l
− ∂cg

m−k+a

∂ql
= 0,

d′
c

dt

(
gm−k+a − ∂gm−k+a

∂q̇l
q̇ l

)
− ∂gm−k+a

∂qm−k+b

(
gm−k+b − ∂gm−k+b

∂q̇l
q̇ l

)
− ∂gm−k+a

∂t

= ∂gm−k+a

∂ql
q̇l − d′

c

dt

(
∂gm−k+a

∂q̇l
q̇ l

)
+

∂gm−k+a

∂qm−k+b

∂gm−k+b

∂q̇l
q̇ l

=
(

∂cg
m−k+a

∂ql
− d′

c

dt

∂gm−k+a

∂q̇l

)
q̇ l = 0, (3.34)

in view of the above theorem. Summarizing, we have the following theorem.
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Theorem 3.6. The canonical distribution C of a semiholonomic constraint is spanned by
vector fields J 1

c ξ , where ξ belongs to the projection D of C, and π̄1,0-vertical vector fields.

Remark 3.7. Note that by the above theorems, constraints linear or affine in velocities
can be alternatively modelled by means of a distribution on Y, and similarly, semiholonomic
constraints can be modelled by means of a completely integrable distribution on Y. The
geometric description of nonholonomic constraints by a distribution on Y (on a ‘configuration
space’, or ‘space of events’) is quite popular and frequently used. The reader should, however,
keep in mind that using such a model in mechanics means that exactly constraints affine in
velocities are considered, while in field theory this is no longer true [16].

To better understand the structure of the constraint ideal, it is worth noting that

dϕa = ψa + 2-contact form + constraint form, (3.35)

where (with the above notations)

ψa = −E ′c
s (gm−k+a)ω̄s ∧ dt +

∂2gm−k+a

∂q̇r∂q̇s
ω̄r ∧ dq̇s , (3.36)

hence,

p̄1ψ
a = −Ec

s (g
m−k+a)ω̄s ∧ dt. (3.37)

Field theory. If dim X > 1, the situation is more complicated (see [16]). The canonical
distribution C on Q is annihilated by the following system of κn smooth contact 1-forms

φαj =
(

∂f α

∂yσ
j

◦ ι

)
ω̄σ , 1 � α � κ, 1 � j � n, (3.38)

that, however, are not linearly independent. Moreover, the rank of C need not be constant
(C → Q need not be a bundle over Q).

We can see that at each point in Q,

corank C = rank

(
∂f α

∂yσ
j

◦ ι

)
� min{m, κn}, (3.39)

where the right-hand side matrix has κn rows labelled by α, j , and m columns, labelled by
σ . We say that the constraint Q is regular if the matrix (3.39) has a constant rank, k, where
1 � k < m. We then call k the constraint dimension of Q.

If the constraint Q is regular, then C is locally annihilated by a system of k linearly
independent 1-forms of (3.38), and we may assume generators of C in the following normal
form

ϕa = ω̄m−k+a −
m−k∑
s=1

Ga
s ω̄

s, 1 � a � k, (3.40)

where Ga
s are appropriate functions.

Similarly as above, by constraint forms we shall mean differential forms belonging to the
constraint ideal on Q, generated by the 1-forms ϕa, 1 � a � k.

The canonical distribution of a regular constraint can locally be spanned by a system of
smooth vector fields

∂c

∂xi
= ∂

∂xi
+

k∑
a=1

(
gm−k+a

i − Ga
s g

s
i

) ∂

∂ym−k+a
, 1 � i � n,
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∂c

∂ys
= ∂

∂ys
+

k∑
a=1

Ga
s

∂

∂ym−k+a
, 1 � s � m − k, (3.41)

∂

∂zJ
, 1 � J � nm − κ,

hence Chetaev vector fields become vector fields on Q of the following form:

Z = Zi
0

∂c

∂xi
+

m−k∑
s=1

Zs ∂c

∂ys
+

nm−κ∑
J=1

Z̃J ∂

∂zJ

= Zi
0

∂

∂xi
+

m−k∑
s=1

Zs ∂

∂ys
+

k∑
a=1

(
Zi

0g
m−k+a
i +

m−k∑
s=1

Ga
s

(
Zs − Zi

0g
s
i

)) ∂

∂ym−k+a
+

nm−κ∑
J=1

Z̃J ∂

∂zJ
.

(3.42)

One can see that C can be spanned by vector fields projectable onto X.
Similarly as in mechanics, the family of Chetaev vector fields need not contain vector

fields projectable onto Y, so that the canonical distribution C need not contain prolongations
of vector fields defined on Y. We have the following result (see [16]).

Theorem 3.8. The following conditions are equivalent.

(1) C is π̄1,0-projectable (i.e., the projection D of C is a distribution on Y).
(2) The relation

∂Ga
s

∂zJ
= 0 (3.43)

holds.
(3) The constraint Q is locally given by equations

f α ≡ f a
i = Aa

i + Ba
σyσ

i = 0, rank
(
Ba

σ

) = k, (3.44)

where 1 � α = (a, i) � κ = codimQ, 1 � a � k, 1 � i � n.
(4) The constraint Q is defined by a distribution on Y, locally annihilated by 1-forms

Aa
i dxi + Ba

σ dyσ , rank
(
Ba

σ

) = k, (3.45)

where 1 � a � k.

Note that equations (3.44) represent only a particular form of PDE’s affine in the first
derivatives. Thus in field theory, constraints modelled by a (co)distribution on Y represent
only a ‘small family’ of affine constraints: for example, the constraint y1

1 + y2
2 = 0 does not

come from a distribution on Y. This makes nonholonomic field theory distinct from mechanics,
where all constraints affine in the first derivatives can be modelled by a distribution on Y.

A constraint Q is called semiholonomic if the constraint ideal is closed, i.e., the canonical
distribution C is completely integrable [16]. It can be shown that the canonical distribution
on every semiholonomic constraint is π̄1,0-projectable [16]. Hence, every semiholonomic
constraint can be alternatively modelled as a weakly horizontal1 completely integrable
distribution of corank k on Y. Moreover, in complete analogy with mechanics, semiholonomic
constraints in field theory agree with the prolongation structure in J 1Y . Analysing the
canonical distribution in the same way, we get the same result as in theorem 3.6: the canonical
distribution C on a semiholonomic constraint is spanned by vector fields of the form J 1

c ξ where
ξ belongs to the projection D of C, and π̄1,0-vertical vector fields.

1 The ‘weak horizontality’ is expressed by condition rank(Ba
σ ) = k and means that sections of π are among admissible

integral mappings.
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The following theorem will be very useful to simplify many formulae and calculations2.

Theorem 3.9. Every regular nonholonomic constraint Q ⊂ J 1Y has the following properties.
(1) The forms p̄1 dϕa, 1 � k � a, are π̄1,0-horizontal.
(2) For every constraint 1-form ϕ, p̄1 dϕ is π̄1,0-horizontal.
(3) The following identities are true:

Ga
s

(
dcg

s
j

dxi
− dcg

s
i

dxj

)
= dcg

m−k+a
j

dxi
− dcg

m−k+a
i

dxj
, (3.46)

Ga
s

(
d′

cg
s
j

dxi
− d′

cg
s
i

dxj

)
= d′

cg
m−k+a
j

dxi
− d′

cg
m−k+a
i

dxj
, (3.47)

Ca
Jj ≡ Ga

s

∂gs
j

∂zJ
− ∂gm−k+a

j

∂zJ
= 0. (3.48)

Proof. Computing dϕa we obtain

dϕa = dω̄m−k+a − dGa
s ∧ ω̄s − Ga

s dω̄s

= −dgm−k+a
j ∧ dxj − dGa

s ∧ ω̄s + Ga
s dgs

j ∧ dxj

=
(

Ga
s

d′
cg

s
j

dxi
− d′

cg
m−k+a
j

dxi

)
dxi ∧ dxj

+

(
Ga

s

∂cg
s
j

∂yr
+

d′
cG

a
r

dxj
− ∂cg

m−k+a
j

∂yr

)
ω̄r ∧ dxj

+

(
Ga

s

∂gs
j

∂zJ
− ∂gm−k+a

j

∂zJ

)
dzJ ∧ dxj − ∂cG

a
s

∂yr
ω̄r ∧ ω̄s − ∂Ga

s

∂zJ
dzJ ∧ ω̄s

+

(
Ga

s

∂gs
j

∂ym−k+b
− ∂gm−k+a

j

∂ym−k+b

)
ϕ̄b ∧ dxj − ∂Ga

s

∂ym−k+b
ϕ̄b ∧ ω̄s, (3.49)

and

p̄1 dϕa =
(

Ga
s

∂cg
s
j

∂yr
+

dcG
a
r

dxj
− ∂cg

m−k+a
j

∂yr

)
ω̄r ∧ dxj

+

(
Ga

s

∂gs
j

∂zJ
− ∂gm−k+a

j

∂zJ

)
ω̂J ∧ dxj

+

(
Ga

s

∂gs
j

∂ym−k+b
− ∂gm−k+a

j

∂ym−k+b

)
ϕ̄b ∧ dxj . (3.50)

Since for each a the ϕa is contact, dϕa is also contact. Hence

h̄ dϕa =
(

Ga
s

d′
cg

s
j

dxi
− d′

cg
m−k+a
j

dxi
+

(
Ga

s

∂gs
j

∂zJ
− ∂gm−k+a

j

∂zJ

)
zJ
i

)
dxi ∧ dxj

=
(

Ga
s

dcg
s
j

dxi
− dcg

m−k+a
j

dxi

)
dxi ∧ dxj = 0, (3.51)

and we can see that (3.46) holds. We also get (3.47) and

2 With theorem 3.9, some results previously obtained in [16, 20] are simplified. In particular, formula (3.48) is
significant, saying that all the functions Ca

Jj vanish. Due to this identity, some important formulae, e.g. constrained
Poincaré–Cartan form or constrained equations of motion, take a more friendly coordinate form.
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Ga

s

∂gs
j

∂zJ
− ∂gm−k+a

j

∂zJ

)
zJ
i −

(
Ga

s

∂gs
i

∂zJ
− ∂gm−k+a

i

∂zJ

)
zJ
j = 0 ∀ i, j, (3.52)

meaning that (3.48) are true.
Substituting (3.48) into (3.50), we obtain the first assertion of theorem 3.9.
Finally, if ϕ ∈ C0, we have ϕ = Faϕ

a , hence dϕ = Fa dϕa + dFa ∧ ϕa , and (since ϕa are
contact forms) p̄1 dϕ = Fap̄1 dϕa + h̄ dFa ∧ ϕa . Assertion (2) now follows from (1). �

For convenience, let us write

E ′c
s

(
gm−k+a

j

) = ∂cg
m−k+a
j

∂ys
− d′

cG
a
s

dxj
− ∂cg

r
j

∂ys
Ga

r , (3.53)

Ec
s

(
gm−k+a

j

) = ∂cg
m−k+a
j

∂ys
− dcG

a
s

dxj
− ∂cg

r
j

∂ys
Ga

r . (3.54)

With this notation,

dϕa = −E ′c
r

(
gm−k+a

j

)
ω̄r ∧ dxj − ∂cG

a
s

∂yr
ω̄r ∧ ω̄s − ∂Ga

s

∂zJ
dzJ ∧ ω̄s

+

(
Ga

s

∂gs
j

∂ym−k+b
− ∂gm−k+a

j

∂ym−k+b

)
ϕ̄b ∧ dxj − ∂Ga

s

∂ym−k+b
ϕ̄b ∧ ω̄s, (3.55)

p̄1 dϕa = −Ec
r

(
gm−k+a

j

)
ω̄r ∧ dxj +

(
Ga

s

∂gs
j

∂ym−k+b
− ∂gm−k+a

j

∂ym−k+b

)
ϕ̄b ∧ dxj , (3.56)

and dϕa ∧ ωj = ψa
j + 2-contact form + constraint form, where

ψa
j = −E ′c

s

(
gm−k+a

j

)
ω̄s ∧ ω0 +

∂Ga
s

∂zJ
ω̄s ∧ dzJ ∧ ωj , (3.57)

i.e.,

p̄1ψ
a
j = −Ec

s

(
gm−k+a

j

)
ω̄s ∧ ω0. (3.58)

The above formulae will be useful later when we shall study constrained variations.

Remark 3.10. Theorem 3.9, item (1) or (2), is a rather surprising property of nonholonomic
constraints: in fact it claims that the canonical distribution of a regular nonholonomic constraint
is optimal in the sense that C0, hence the constraint ideal, is generated by Lepage forms. This
property can be viewed as an important intrinsic definition of the canonical distribution and the
constraint ideal. Although constraint 1-forms ϕa are of local nature (as local generators of the
codistribution C0), their intrinsic characterization is that they are Lepage forms; the horizontal
components of these forms are then Lagrangians for the constraint Q (for more details we
refer to [16], the concept of the Lagrangian constraint).

4. The first variation formula on a nonholonomic constraint

Consider a nonholonomic constraint Q ⊂ J 1Y . Our aim is to propose a variational principle
on the constraint submanifold Q, providing Chetaev-reduced equations as equations for
‘constrained extremals’.

It is important to note that we have to distinguish two distinct cases as follows:

• A variational principle for a constrained to Q Lagrangian system that is originally defined
on J 1Y ;

18



J. Phys. A: Math. Theor. 42 (2009) 185201 O Krupková

• A ‘true’ variational principle on Q: the integrand of the action is a differential form on Q:
it need not come from an ‘unconstrained’ Lagrangian system on the surrounding manifold
J 1Y .

4.1. Admissible sections, nonholonomic virtual displacements

Admissible sections are solutions of the equations of the constraint. This means that they have
to end in the constraint submanifold Q ⊂ J 1Y , otherwise speaking, they are sections of the
fibred manifold π̄1 : Q → X. Every admissible section δ has a counterpart in Y: it is a section
γ of π : Y → X, given by

γ = π̄1,0 ◦ δ. (4.1)

Often we are interested in holonomic admissible sections (i.e., δ = J 1γ ). In this context we
also speak about admissible sections of π : Y → X: a section γ of π is called admissible for
Q if J 1γ is admissible.

We can immediately see that the following proposition holds.

Proposition 4.1. Given a regular nonholonomic constraint Q ⊂ J 1Y , holonomic admissible
sections are integral sections of the canonical distribution C on Q. Consequently, for every
admissible section γ of π , J 1γ is an integral section of C.

Proof. If γ is a section of π such that ImJ 1γ ⊂ Q, then for all constraint 1-forms
ϕa, 1 � a � k, we obtain J 1γ ∗ϕa = 0, since J 1γ ∗ω̄σ = 0 for all 1 � σ � m. �

A correct concept of admissible variations is, contrary to the unconstrained case, difficult
and not so straightforward: the key to this concept is the canonical distribution: as pointed out
in [14], nonholonomic virtual displacements, or admissible variations are realized by Chetaev
vector fields.3

It is important to note that to obtain variations (deformations) of admissible sections
one has to consider Chetaev vector fields that are projectable onto X. Indeed, variations of
a section of Q induced by a projectable vector field provide a 1-parametric family of maps
that all are sections of the constraint manifold. Precisely, if Z is a π̄1-projectable vector field
belonging to the canonical distribution, and φu, respectively φ0u is the local 1-parameter group
of Z, respectively of the π̄1-projection of Z, then for every parameter u ∈ (−ε, ε) from an
appropriate ε-neighbourhood of 0 ∈ R, the composed mapping

δu = φuδφ
−1
0u (4.2)

is a section of π̄1. In this way we get a 1-parameter family of admissible sections {δu}, induced
by Z.

Looking at formulae (3.27) and (3.42) defining Chetaev vector fields, and having in mind
theorems 3.4 and 3.8, we immediately realize a rather surprising property of nonholonomic
variations. Namely, there is no direct concept of nonholonomic variations of an admissible
section γ of π , unless the canonical distribution is projectable onto Y. In the latter ‘simple’
situation, we have a proposition as follows:

Proposition 4.2. Let Q ⊂ J 1Y be a regular nonholonomic constraint. Assume that the
canonical distribution C is π̄1,0-projectable, denote D its projection. Let γ be an admissible

3 Note that, nonholonomic ‘virtual displacements’ take place in the manifold Q, i.e. in the space of events and
constrained velocities.
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section of π . Given a π -projectable vector field ξ ∈ D with the local 1-parameter group
ψu, u ∈ (−ε, ε), then

γu = ψuγψ−1
0u , u ∈ (−ε, ε) (4.3)

is a 1-parameter family of sections of π : Y → X such that for every u, γu is the projection of
an admissible section X → Q.

If Q is semiholonomic then (4.3) is a 1-parameter family of admissible sections of
π : Y → X.

Proof. Let ξ ∈ D, and choose Z ∈ C such that ξ is the π̄1,0-projection of Z. Denote
φu, u ∈ (−ε, ε) the 1-parameter group of Z. Then

ψu ◦ π̄1,0 = π̄1,0 ◦ φu, and φ0u = ψ0u. (4.4)

Consider the deformation of the section J 1γ by Z, i.e. the family of sections

δu = φu ◦ J 1γ ◦ φ−1
0u , u ∈ (−ε, ε). (4.5)

Then for every u, the projection of δu takes the form

γu = π̄1,0 ◦ δu = π̄1,0 ◦ φu ◦ J 1γ ◦ φ−1
0u = ψu ◦ π̄1,0 ◦ J 1γ ◦ ψ−1

0u = ψu ◦ γ ◦ ψ−1
0u , (4.6)

as desired.
If Q is semiholonomic, we have J 1γu = J 1

(
ψuγψ−1

0u

) = J 1ψu ◦ J 1γ ◦ ψ−1
0u . Since

J 1γ is a section of π̄1 and the vector field J 1
c ξ belongs to the canonical distribution C, so

that it is tangent to the manifold Q, we get for all points x from the domain of γ and for all
u ∈ (−ε, ε) that J 1γu(x) = J 1ψu

(
J 1γ

(
ψ−1

0u (x)
)) ∈ Q. This means that all γu are admissible

sections. �

If the canonical distribution is not projectable onto Y, taking an admissible section γ of π

and a ‘variation vector field’ Z ∈ C, we get a family of admissible sections of the constraint Q

δu = φuJ
1γφ−1

0u . (4.7)

First of all, sections δu of this family need not be holonomic (i.e., a deformation (variation) of
prolongation of an admissible section of π need not correspond to a prolongation of a section
of π ) which is a violation of the ‘classical’ principle of virtual displacements. Moreover, the
projection of {δu}, i.e. the family of sections of π of the form

γu = π̄1,0φuJ
1γφ−1

0u (4.8)

need not be induced by a vector field on Y.

4.2. The nonholonomic first variation formula for ambient Lagrangian systems

Given a nonholonomic constraint Q ⊂ J 1Y and a Lagrangian λ on J 1Y we shall introduce a
variational principle for sections of the constraint Q such that the extremals of the constraint
action are solutions of the reduced nonholonomic equations.

First, let us summarize main points to be considered:

• The variational principle is formulated for the fibred manifold π̄1 : Q → X, dim X = n,
endowed with the canonical distribution C.

• Admissible paths are sections of the fibred manifold π̄1 : Q → X.
• Admissible variations are π̄1-projectable vector fields belonging to the canonical

distribution (Chetaev vector fields).

It remains to specify the integrand of the action function. In this section we shall assume
that the constrained system arises from an unconstrained Lagrangian system on J 1Y .
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As above, ι : Q → J 1Y is the canonical embedding of a nonholonomic constraint in
J 1Y, C is the canonical distribution on Q. Given a Lagrangian λ on J 1Y , it is known that the
corresponding constrained Lagrangian system is not simply the horizontal n-form ι∗λ (see e.g.
[14, 15]).

Definition 4.3. By a constrained (to Q) system defined by a Lagrangian λ on J 1Y we shall
mean the differential n-form ι∗ρ, defined on Q, where ρ is a Lepage equivalent of λ.

As we know, for dim X = 1 the only choice is ρ = �λ (the Cartan form), while for
dim X > 1 we have ρ = �λ + dν + μ, where �λ is the Poincaré–Cartan form, ν is a contact
form and μ is a 2-contact form; the latter forms need not be determined by the Lagrangian.

For the sake of clarity it is worth considering the case dim X = 1 (constrained curves)
and dim X > 1 (constrained fields) separately.

Mechanics. Let dim X = 1. Given a Lagrangian λ on J 1Y and a nonholonomic constraint Q
in J 1Y , there arises a unique constrained system ι∗�λ defined on Q.

Let us recall a useful relation between ι∗�λ, the constrained to Q Cartan form of λ, and
�ι∗λ, the (local)4 Cartan form of the constrained Lagrangian [15]:

Proposition 4.4. Let us write

λ = ι∗λ = (L ◦ ι) dt = L̄ dt, (4.9)

�λ = �ι∗λ = L̄ dt +
m−k∑
l=1

∂L̄

∂q̇l
ω̄l, (4.10)

and

La = ∂L

∂q̇m−k+a
◦ ι, 1 � a � k. (4.11)

The form ι∗�λ locally splits into two terms as follows:

ι∗�λ = �λ + Laϕ
a, (4.12)

i.e. the difference ι∗�λ − �λ is a constraint form.

Definition 4.5. Let � ⊂ X be a piece of X (for simplicity we can take � = [a, b], a < b).
Denote by S�(π̄1) the set of sections of the projection π̄1 : Q → X, whose domains are
neighbourhoods of �. The function

S�(π̄1) � δ →
∫

�

δ∗ι∗�λ ∈ R, (4.13)

will be called the constrained (to Q) action function of the Lagrangian λ over �.

Let Z be a π̄1-projectable vector field belonging to the canonical distribution, and {φu},
respectively {φ0u} the local 1-parameter group of Z, respectively of the π̄1-projection of Z.
Given a section δ ∈ S�(π̄1), we get for every u (from an appropriate ε-neighbourhood of
0 ∈ R) a deformed section δu = φuδφ

−1
0u of π̄1 defined in a neighbourhood of φ0u(�); the

1-parameter family {δu} is called constrained variation of δ induced by Z.
In this way, every π̄1-projectable Chetaev vector field Z induces a real-valued function

u →
∫

φ0u(�)

δ∗
uι

∗�λ ∈ R. (4.14)

4 Note that the ‘Cartan form of the constrained Lagrangian’, �ι∗λ, need not be globally defined on Q.
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Differentiating at u = 0 we get the following function on the set S�(π̄1):

S�(π̄1) � δ →
(

d

du

∫
φ0u(�)

δ∗
uι

∗�λ

)
u=0

=
∫

�

δ∗L
Z
ι∗�λ ∈ R; (4.15)

we shall call it the first constrained variation of the action function of λ over �, induced by Z.

Remark 4.6. Applying the same procedure to the 1-form L
Z
ι∗�λ in place of ι∗�λ we obtain

the second constrained variation of the action function of λ over � as the second Lie derivative
of ι∗�λ, and in the same way we easily get higher constrained variations (induced, in general,
by different Chetaev vector fields).

Let us turn back to the first constrained variation. To study constrained sections of the
fibred manifold π : Y → X, we have to restrict the domain of definition S�(π̄1) of the
function (4.15) to the subset Sh

�(π̄1) of holonomic sections of the projection π̄1, i.e. to sections
of π̄1 : Q → X of the form δ = J 1γ where γ ∈ S�(π). Then the first constrained variation
(4.15) can be regarded as a function

S�,Q(π) � γ →
∫

�

J 1γ ∗L
Z
ι∗�λ ∈ R (4.16)

defined on a subset of sections of the projection π : Y → X.

Remark 4.7. It should be stressed that the restricted first constrained variation cannot be
obtained via a ‘variation procedure’ from a certain ‘action’ defined on the set S�,Q(π) (see
proposition 4.2 and the discussion around).

Applying to (4.16) Cartan’s formula for the decomposition of Lie derivative, and keeping
notations introduced so far, we obtain the following theorem:

Theorem 4.8. Let λ be a Lagrangian on J 1Y . Given a nonholonomic constraint ι : Q → J 1Y ,
the constrained first variation formula takes the form∫

�

J 1γ ∗L
Z
ι∗�λ =

∫
�

J 1γ ∗iZι∗ d�λ +
∫

�

J 1γ ∗ diZι∗�λ, (4.17)

or, has an equivalent expression∫
�

J 1γ ∗L
Z
ι∗�λ =

∫
�

J 1γ ∗iZ(d�λ + Laψ
a) +

∫
�

J 1γ ∗ diZ�λ, (4.18)

where Z is any π̄1-projectable Chetaev vector field.

Proof. First we show that (4.17) and (4.18) are equivalent. From (4.12) we obtain

ι∗d�λ = d�λ + Laψ
a + 2-contact form + constraint form, (4.19)

where the 2-forms ψa were defined in (3.36). Applying to this formula contraction by Z and
the pullback by J 1γ , we can see that the last two terms vanish. Indeed, the contraction of a
constraint form by a Chetaev vector field Z is a constraint form, hence contact, and similarly
a contraction of a 2-contact form (by any vector field) is a contact form, vanishing along
prolongations of γ . Finally, (4.12) and iZϕa = 0 ∀ a, gives us iZι∗�λ = iZ�λ.

It remains to prove that (4.17), respectively (4.18), represents a decomposition into a
‘constrained Euler–Lagrange term’ and a boundary term. The latter is obvious, since∫

�

J 1γ ∗diZι∗�λ =
∫

∂�

J 1γ ∗iZι∗�λ. (4.20)
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Hence, we have only to show that the term J 1γ ∗iZι∗d�λ, or, equivalently, the horizontal part
of iZι∗d�λ, does not depend upon the ‘first-order components’ of the vector field Z, i.e. the
components Z̃s at ∂/∂q̇s, 1 � s � m − k. This is easily seen from (4.18). Indeed,

h̄iZ(d�λ + Laψ
a) = h̄iZp̄1(d�λ + Laψ

a) = (
Ec

s (L̄) − LaEc
s (g

m−k+a)
)
Zs dt, (4.21)

proving that the term∫
�

J 1γ ∗iZι∗d�λ =
∫

�

J 1γ ∗iZ(d�λ + Laψ
a) (4.22)

really has the meaning of a ‘constrained Euler–Lagrange term’. �

Remark 4.9. The vector field Z need not be a symmetry of the (induced) contact ideal on
Q; hence L

Z
need not be compatible with the decomposition of the 1-form ι∗�λ into the

horizontal and contact component. Indeed, in general,

L
Z
h̄ι∗�λ = L

Z
ι∗λ 
= h̄L

Z
ι∗�λ (4.23)

so that on the left-hand side of the constrained first variation formula one cannot put the Lie
derivative of the ‘constrained Lagrangian’, L

Z
λ̄, instead of L

Z
ι∗�λ.

Let us compute the term that appears as the horizontal part of L
Z
ι∗�λ; hence substitutes

the role of a ‘transformed constrained Lagrangian’: taking into account that Z is a Chetaev
vector field (iZϕa = 0 ∀ a) and the constraint forms ϕa are contact, we obtain up to a contact
form (indicated by dots)

L
Z
ι∗�λ = L

Z
�ι∗λ + L

Z
(Laϕ

a)

= L
Z
ι∗λ +

∂(L ◦ ι)

∂q̇l
L

Z
ω̄l + LaLZ

ϕa + · · ·

= L
Z
ι∗λ +

∂(L ◦ ι)

∂q̇l
(iZ dω̄l + diZω̄l) + LaiZ dϕa + · · ·

= L
Z
ι∗λ +

∂(L ◦ ι)

∂q̇l
(Z0 dq̇ l − Z̃l dt + d(Zl − q̇ lZ0)) + LaiZψa + · · · . (4.24)

After splitting to the horizontal and contact component we finally obtain

h̄L
Z
ι∗�λ = L

Z
λ −

(
LaEc

l (g
m−k+a)(Zl − q̇ lZ0) − ∂(L ◦ ι)

∂q̇l

(
dcZ

l

dt
− q̇ l dcZ

0

dt
− Z̃l

))
dt

(4.25)

(note that the form above is defined on Q̂ ⊂ J 2Y ).
Hence, we can conclude:

Proposition 4.10. With the notation ι∗λ = λ̄ = L̄ dt the integrand on the left-hand side of the
constrained first variation formula (4.17), resp. (4.18) reads

J 1γ ∗L
Z
ι∗�λ = J 2γ ∗

[
L

Z
λ̄ −

(
LaEc

l (g
m−k+a)(Zl − q̇ lZ0)

− ∂L̄

∂q̇l

(
dcZ

l

dt
− q̇ l dcZ

0

dt
− Z̃l

))]
dt. (4.26)

If, in particular, the constrained variation Z is a contact symmetry then∫
�

J 1γ ∗L
Z
ι∗�λ =

∫
�

J 1γ ∗L
Z
λ̄. (4.27)
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Remark 4.11. If Q is semiholonomic then, as we have seen, every constrained variation Z ∈ C
such that ξ = T π̄1,0 · Z 
= 0, is a contact symmetry, moreover, Z = J 1

c ξ . Hence,∫
�

J 1γ ∗L
J1

c ξ
ι∗�λ =

∫
�

J 1γ ∗L
J1

c ξ
λ̄ (4.28)

for every π -projectable vector field ξ ∈ D, where D is the projection of the canonical
distribution.

Field theory. Now, let dim X = n > 1. Consider a nonholonomic constraint ι : Q →
J 1Y, codimQ = κ , and its canonical distribution C. To avoid technical problems with points
of discontinuity of generators of C, in what follows, we assume the constraint Q be regular,
and put rankC = k, where k is a constant, 1 � k < m.

Similarly as in mechanics, we have a local splitting of the constrained Cartan form ι∗�λ

of a Lagrangian λ on J 1Y , as follows (cf [16] and (3.48)):

ι∗�λ = �λ + Lj
aϕ

a ∧ ωj , (4.29)

where

�λ = L̄ω0 +
∂L̄

∂zJ

∂zJ

∂ys
j

ω̄s ∧ ωj (4.30)

is the local ‘Cartan form’ of the constrained Lagrangian ι∗λ = λ̄, and

Lj
a = ∂L

∂ym−k+a
j

◦ ι. (4.31)

Definition 4.12. Let λ be a Lagrangian on J 1Y , ρ its Lepage equivalent. The constrained
action function of ρ over a piece � of X is a real function

S�(π̄1) � δ →
∫

�

δ∗ι∗ρ ∈ R. (4.32)

Consider a π̄1-projectable Chetaev vector field Z on Q. Given a section δ ∈ S�(π̄1),
consider its constrained variation induced by Z,

δu = φuδφ0u, u ∈ (−ε, ε) (4.33)

and the induced function

u →
∫

φ0u(�)

δ∗
uι

∗ρ ∈ R. (4.34)

Differentiating at u = 0 as usual, we get the first constrained variation5 of the action function
of ρ over �, induced by Z; it reads

S�(π̄1) � δ →
(

d

du

∫
φ0u(�)

δ∗
uι

∗ρ
)

u=0

=
∫

�

δ∗L
Z
ι∗ρ ∈ R. (4.35)

Restricting to constrained sections of the fibred manifold π : Y → X, i.e., restricting the
domain of definition S�(π̄1) of (4.35) to the subset of holonomic sections of the projection π̄1,
we get the function

S�,Q(π) � γ →
∫

�

J 1γ ∗L
Z
ι∗ρ ∈ R, (4.36)

5 Again, higher constrained variations are easily obtained: applying the same procedure (with eventually another
Chetaev vector field) to the n-form L

Z
ι∗ρ in place of ι∗ρ we obtain the second constrained variation of the action

function as the second Lie derivative of ι∗ρ, and so on for higher constrained variations.
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defined on a subset of sections of the projection π : Y → X. Keep in mind that the restricted
first variation of the action usually(!) does not come from a variation of action defined on
sections of π .

The decomposition of the Lie derivative gives us the constrained first variation formula
for a Lepage form ρ. However, to a Lagrangian λ, we have a family of Lepage equivalents.
We know that for an unconstrained first-order Lagrangian, the first variation formula does not
depend upon a choice of its Lepage equivalent. Hence, we also wish to clarify the impact of
nonuniqueness of ρ in the presence of constraints. The results are summarized as follows:

Theorem 4.13. Let λ be a Lagrangian on J 1Y . Given a nonholonomic constraint
ι : Q → J 1Y , for every π̄1-projectable Chetaev vector field Z on Q the constrained first
variation formula reads∫

�

J 1γ ∗L
Z
ι∗ρ =

∫
�

J 1γ ∗iZι∗dρ +
∫

∂�

J 1γ ∗iZι∗ρ, (4.37)

where ρ is a Lepage equivalent of λ.
Moreover, the first term on the right-hand side of (4.37) does not depend upon a choice

of a Lepage equivalent of λ, and the other terms depend only upon the at most 1-contact part
θ = �λ + p1 dν of ρ, i.e., (4.37) is the same as∫

�

J 1γ ∗L
Z
ι∗θ =

∫
�

J 1γ ∗iZι∗d�λ +
∫

∂�

J 1γ ∗iZι∗θ, (4.38)

where �λ is the Poincaré–Cartan form of λ.
The constrained first variation formula has also the following equivalent form∫

�

J 1γ ∗L
Z
ι∗θ =

∫
�

J 1γ ∗iZ
(
d�λ + Lj

aψ
a
j

)
+

∫
∂�

J 1γ ∗iZ(�λ + p̄1 dι∗ν). (4.39)

Proof. First, we show the independence of (4.37) upon a choice of the at least 2-contact part
of ρ. Every Lepage equivalent of a first-order Lagrangian λ reads ρ = �λ + dν +μ, where ν is
a contact and μ is at least a 2-contact form on J 1Y . Then L

Z
ι∗ρ = L

Z
ι∗�λ +L

Z
ι∗dν +L

Z
ι∗μ.

However, ι∗μ is a 2-contact form on Q; hence the Lie derivative of ι∗μ by any vector field
yields a form that is at least 1-contact. This means that L

Z
ι∗μ vanishes along J 1γ , so that∫

�

J 1γ ∗L
Z
ι∗ρ =

∫
�

J 1γ ∗L
Z
ι∗θ =

∫
�

J 1γ ∗iZι∗dθ +
∫

∂�

J 1γ ∗iZι∗θ. (4.40)

Let us show that also the right-hand sides of formulae (4.37) and (4.38) are the same. For the
first term we have

J 1γ ∗iZι∗dρ = J 1γ ∗iZι∗(d�λ + dμ) = J 1γ ∗iZι∗d�λ, (4.41)

since iZ(ι∗dμ) is contact. The second term becomes J 1γ ∗iZι∗ρ = J 1γ ∗iZι∗(θ + μ̃),
where μ̃ is at least 2-contact. Contraction of μ̃ is contact, and vanishes along J 1γ , hence
J 1γ ∗iZι∗ρ = J 1γ ∗iZι∗θ .

Now, let us prove equivalence of (4.38) and (4.39). By (4.29) and (3.57) we obtain
ι∗d�λ = d�λ + L

j
aψ

a
j + constraint form +2-contact form. However, the contraction with a

Chetaev vector field of the last two terms is a contact form, vanishing along J 1γ . Computing
the second integrand we get J 1γ ∗iZι∗θ = J 1γ ∗iZ(�λ + L

j
aϕ

a ∧ ωj + ι∗p1 dν), however, the
form L

j
aiZ(ϕa ∧ ωj) is contact, and ι∗p1 dν = p̄1dι∗ν.

Finally, we have to show that in the constrained first variation formula the term
J 1γ ∗iZι∗d�λ does not depend upon the ‘first-order components’ of the vector field Z, i.e.
the components at ∂/∂zJ . This is, however, immediately seen from (4.39), if we look at the
definition of the forms �λ and ψa

j . �

25



J. Phys. A: Math. Theor. 42 (2009) 185201 O Krupková

We can conclude that for different Lepage equivalents ρ1, ρ2 of a Lagrangian, constrained
equations of motion are the same, however, conservation laws may be different, and the
difference depends upon the contact form θ1 − θ2.

Remark 4.14. Note that the above theorem indeed presents a correct constrained first variation
formula, since the ‘Euler–Lagrange term’ does not depend upon the first-order components of
the vector field Z, i.e. components at ∂/∂zJ .

Besides the integral constraint first variation formula we have also its differential version,
that we shall call infinitesimal constraint first variation formula. It obviously takes one of the
following equivalent forms:

h̄L
Z
ι∗ρ = h̄iZι∗ dρ + h̄ diZι∗ρ, (4.42)

h̄L
Z
ι∗θ = h̄iZι∗ d�λ + h̄ diZι∗θ, (4.43)

h̄L
Z
ι∗θ = h̄iZ

(
d�λ + Lj

aψ
a
j

)
+ h̄ diZ(�λ + p̄1 dι∗ν). (4.44)

Definition 4.15. We define the constrained Euler–Lagrange form of λ as follows:

Ēλ = p̄1ι
∗ d�λ. (4.45)

It is immediately seen that it holds.

Proposition 4.16.

Ēλ = ι∗p1 d�λ = ι∗Eλ. (4.46)

Writing the constrained Euler–Lagrange form in fibred coordinates adapted to the constraint,
we obtain the formulae

Ēλ = p̄1(d�λ + Lj
aψ

a
j ) =

m−k∑
s=1

Ec
s (L̄, La)ω

s ∧ ω0 + constraint form, (4.47)

where for dim X = 1

Ec
s (L̄, La) = Ec

s (L̄) − LaEc
s (g

m−k+a)

= ∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− La

(
∂cg

m−k+a

∂qs
− dc

dt

∂gm−k+a

∂q̇s

)
, (4.48)

and for dim X = n > 1

Ec
s (L̄, Lj

a) = Ec
s (L̄) − Lj

aEc
s

(
gm−k+a

j

)
= ∂cL̄

∂ys
− dc

dxj

∂L̄

∂ys
j

− ∂cg
r
j

∂ys

∂L̄

∂yr
j

− Lj
a

(
∂cg

m−k+a
j

∂ys
− dcG

a
s

dxj
− ∂cg

r
j

∂ys
Ga

r

)
. (4.49)

Components of Ēλ are called constrained Euler–Lagrange expressions of λ.
Finally, the constrained first variation formula can also be expressed with the help of the

constrained Euler–Lagrange form, to read e.g. as follows:∫
�

J 1γ ∗L
Z
ι∗θ =

∫
�

J 2γ ∗iZĒλ +
∫

∂�

J 1γ ∗iZθ. (4.50)
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4.3. Nonholonomic Euler–Lagrange equations

With the constrained first variation formula it is easy to obtain equations for constrained
extremals—the nonholonomic Euler–Lagrange equations.

First note that the concept of a ‘fixed endpoints’ variation over a piece � of X is defined
in complete analogy with the unconstrained case: it is a π̄1-vertical Chetaev vector field on Q
with the support in π̄−1

1 (�).
Given a constrained Lagrangian system ι∗ρ on Q, a section γ of π : Y → X is called its

extremal over �, if ImJ 1γ ⊂ Q, and∫
�

J 1γ ∗L
Z
ι∗ρ = 0, (4.51)

for every ‘fixed endpoints’ variation Z over �. γ is called an extremal of ι∗ρ, if it is an
extremal of ι∗ρ over every piece � of X such that � ⊂ Dom γ .

The following theorem gives both intrinsic and coordinate versions of equations for
extremals of nonholonomic systems, i.e. of ‘constrained Euler–Lagrange equations’.

Theorem 4.17. Let λ be a Lagrangian on J 1Y , ρ its Lepage equivalent, ι : Q → J 1Y a
nonholonomic constraint. Let γ be a section of π such that ImJ 1γ ⊂ Q. The following
conditions are equivalent:

(1) γ is an extremal of the constrained system ι∗ρ.
(2) For every π̄1-vertical Chetaev vector field Z on Q and any constraint (n + 1)-form ϕ

J 1γ ∗iZ(dι∗ρ + ϕ) = 0. (4.52)

(3) For every π̄1-projectable Chetaev vector field Z on Q and any constraint (n + 1)-form ϕ

J 1γ ∗iZ(dι∗ρ + ϕ) = 0. (4.53)

(4) For every Chetaev vector field Z on Q and any constraint (n + 1)-form ϕ

J 1γ ∗iZ(dι∗ρ + ϕ) = 0. (4.54)

(5) The constrained Euler-Lagrange form Ēλ vanishes along J 2γ , i.e.,

Ēλ ◦ J 2γ = 0. (4.55)

(6) γ satisfies the following system of differential equations(
Ec

s (L̄) − LaEc
s (g

m−k+a)
) ◦ J 2γ = 0, (4.56)

i.e.,
∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
− La

(
∂cg

m−k+a

∂qs
− dc

dt

∂gm−k+a

∂q̇s

)
= 0 (4.57)

if dim X = 1 and(
Ec

s (L̄) − Lj
aEc

s

(
gm−k+a

j

)) ◦ J 2γ = 0, (4.58)

i.e.,

∂cL̄

∂ys
− dc

dxj

∂L̄

∂ys
j

− ∂cg
r
j

∂ys

∂L̄

∂yr
j

− Lj
a

(
∂cg

m−k+a
j

∂ys
− dcG

a
s

dxj
− ∂cg

r
j

∂ys
Ga

r

)
= 0 (4.59)

if dim X = n > 1, respectively, together with the equations of the constraint.

Equations (4.52)–(4.54) do not depend upon a choice of a Lepage equivalent ρ of λ, so
that they may be equivalently written with �λ in place of ρ.

Proof. The constrained first variation formula (4.37) gives us that γ is an extremal of ι∗ρ iff
for every π̄1-vertical Chetaev vector field Z

J 1γ ∗iZ dι∗ρ = 0. (4.60)
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Indeed, it is sufficient to note that every π̄1-vertical vector field can be expressed as a sum
of vector fields with compact supports on appropriate pieces of X. Next, since any constraint
(n + 1)-form ϕ on Q reads ϕ = ϕ(1) ∧ η, where ϕ(1) ∈ C0 and η is an n-form on Q, we have
iZϕ = iZ(ϕ(1) ∧ η) = −ϕ(1) ∧ iZη. The latter is, however, a constraint form, vanishing along
J 1γ (since it is contact). Thus, we have proved equivalence of (1) and (2).

Equivalence of (1), (5) and (6) is easily seen from the following expression of the
constrained first variation formula∫

�

J 1γ ∗L
Z
ι∗ρ =

∫
�

J 2γ ∗iZĒλ +
∫

�

J 1γ ∗diZρ. (4.61)

Indeed, by analogous arguments as in the previous case, γ is an extremal of ι∗ρ iff for every
π̄1-vertical Chetaev vector field Z

J 2γ ∗iZĒλ = 0. (4.62)

Using the expression (4.47) for Ēλ, we obtain

0 = J 2γ ∗iZĒλ = J 2γ ∗(Ec
s Z

sω0 + a constraint form) = J 2γ ∗(Ec
s Z

sω0),

where Zs are components of a π̄1-vertical Chetaev vector field. Using the requirement that this
condition has to be satisfied for every π̄1-vertical Chetaev field, and looking at the generators
of the canonical distribution C, we conclude that this is the case iff (6) holds. The latter is,
however, a coordinate form of (5).

Let us show that (2) implies (4) (the converse is obvious). Let Z be an arbitrary Chetaev
vector field. Then it can be locally splitted as Z = Zi ∂

∂xi + Zv, where Zv is π̄1-vertical.
Assuming (2), we have for any constraint (n + 1)-form ϕ (by similar arguments as above)

J 1γ ∗iZ(dι∗ρ + ϕ) = J 1γ ∗(Zii∂/∂xi ι∗dρ) = J 2γ ∗(Zii∂/∂xi Ēλ) = −J 2γ ∗(Ec
s Z

iω̄s ∧ ωi

) = 0,

since Ec
s = 0, due to the already proved equivalence of (2) and (6).

The equivalence of (2) and (3) is proved exactly by the same arguments.
The independence upon a choice of ρ is now trivial, being an immediate consequence of

equivalence of the corresponding equations with (5) or (6). �

Note that the requirement that vector fields appearing in the intrinsic constrained Euler–
Lagrange equations be Chetaev vector fields is essential. Indeed, given a vector field ζ on Q
not belonging to the canonical distribution, we have

J 1γ ∗iζ dι∗ρ = J 2γ ∗iζ p̄1 dι∗ρ = J 2γ ∗iζ Ēλ = J 2γ ∗(Ec
s ζ

sω0 − Ec
s ζ

i
0ω̄

s ∧ ωi + iζ (ϕ
(1) ∧ ω0)

)
,

where ϕ(1) is a constraint 1-form. If γ is an extremal, then J 1γ ∗iζ dι∗ρ = J 1γ ∗(iζ ϕ(1) · ω0) 
=
0.

We have seen that given a Lagrangian λ on J 1Y , the constrained Euler–Lagrange equations
do not depend upon a choice of a Lepage equivalent ρ of λ, i.e. they are the same for all Lepage
equivalents ρ of λ. This is, however, important, since for different Lepage equivalents of λ,
the Lagrangian λ on J 1Y gives rise to different constrained Lagrangian systems ι∗ρ on Q.

Using this result, the following definition can be stated: given a Lagrangian λ on J 1Y , a
section γ of π : Y → X is called a constrained extremal of λ, if ImJ 1γ ⊂ Q, and∫

�

J 1γ ∗L
Z
ι∗ρ = 0, (4.63)

for (any) Lepage equivalent ρ of λ, and every ‘fixed endpoints’ variation Z over �, or,
equivalently, ∫

�

J 1γ ∗L
Z
ι∗�λ = 0, (4.64)
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for every ‘fixed endpoints’ variation Z over �. γ is called a constrained extremal of λ if it is
its constrained extremal on every piece � of X such that � ⊂ Domγ .

Remark 4.18. Constrained Euler–Lagrange equations in item (6) of the above theorem
are the reduced nonholonomic equations (so-called ‘Chetaev equations without Lagrange
multipliers’). In a different way these equations have been deduced in [15, 24] (mechanics)
and [16, 20] (field theory).

Note that constrained Euler–Lagrange equations are determined by L, defined on the
unconstrained evolution space, or by k + 1 functions L and La, 1 � a � k (respectively, κ + 1
functions L and L

j
a, (a, j) /∈ J ) on Q, where k (respectively κ) is the number of equations

defining the constraint. The constrained Euler–Lagrange equations cannot be determined by
the restricted Lagrangian L̄ alone, unless ψa = 0

(
ψa

j = 0
)
, i.e. unless the constraint is

semiholonomic. In this sense, a constrained Lagrangian is a (local) n-form

λc = L̄ dt +
k∑

a=1

Laϕ
a, resp. λc = L̄ω0 +

∑
(a,j)/∈J

Lj
aϕ

a ∧ ωj , (4.65)

that cannot be replaced by a single function on Q.

4.4. An alternative variational principle for simple nonholonomic and semiholonomic
constraints

We have seen that the family of nonholonomic constraints contains a geometrically significant
subfamily—constraints that can be modelled by a distribution on Y; according to [14] such
constraints are called simple nonholonomic constraints. Recall that in mechanics this family
is quite large and important, since it contains all nonholonomic constraints affine in velocities;
on the other hand, in field theory it is only a certain subfamily of ‘affine’ constraints.

Below we shall present a modification of the nonholonomic variational principle suitable
for description of this particular situation.

On Y consider a weakly horizontal distribution D of a constant corank k < m (hence of
rank n + m − k); recall that weak horizontality means that D has a vertical subdistribution
of rank m − k (sections of π are among admissible integral mappings) [13]. As mentioned
earlier, D gives rise to a constraint Q ⊂ J 1Y and the canonical distribution C on Q (equations
for holonomic sections of π̄1 : Q → X are equations for integral sections of D, i.e. admissible
sections of π are integral sections of D, and it holds that C projects onto D).

Semiholonomic constraints. First, assume that D is completely integrable, i.e., the
nonholonomic constraint is semiholonomic. In this case D is spanned by π -projectable
vector fields ξ on Y such that J 1

c ξ ∈ C. Moreover, the vector fields J 1
c ξ are symmetries of the

induced contact ideal on Q, meaning that the Lie derivative preserves decomposition of forms
into contact components. All this means that the variational principle does not much differ
from the unconstrained and holonomic one:

• Integral sections γ of the distributionD such that Im J 1γ ∩Q 
= ∅ are admissible sections,
since their prolongations satisfy equations of Q. Indeed, if γ is an integral section of D
then γ is an integral section of a vector field ξ ∈ D, and hence J 1γ is an integral section
of J 1ξ . However, J 1ξ along Q is tangent to Q and equal to J 1

c ξ , so that if for some
x ∈ X, J 1γ (x) ∈ Q then ImJ 1γ ⊂ Q, meaning that γ is an admissible section of π .

• Admissible variations in Y are π -projectable vector fields belonging to D.
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• Admissible variations in Y obey the principle of virtual displacements. Indeed,
deformations of an admissible section γ of π by projectable ξ ∈ D induce deformations
of J 1γ by J 1

c ξ ∈ C that all are holonomic sections of Q: J 1γu = (J 1γ )u, ∀u.
• We can restrict the constrained action to the subset of admissible sections of π . The

variation of the restricted action is well defined and equal to the restriction of the variation
of the constrained action.

• In the integrand of both the action and the variation of the action, only the horizontal part,
i.e. the restricted (to Q) Lagrangian, ι∗λ = λ, is essential.

Summarizing, given a Lagrangian λ on J 1Y , we have the constrained action function

S�,Q(π) � γ →
∫

�

J 1γ ∗ι∗ρ =
∫

�

J 1γ ∗λ ∈ R, (4.66)

and for every π -projectable vector field ξ ∈ D the first variation of the constrained action
induced by ξ is computed in a standard way; this computation gives

S�,Q(π) � γ →
∫

�

J 1γ ∗LJ 1
c ξ ι

∗ρ =
∫

�

J 1γ ∗LJ 1
c ξ λ ∈ R. (4.67)

(cf with (4.36)). Now, the semiholonomic first variation formula takes one of the following
equivalent forms:∫

�

J 1γ ∗LJ 1
c ξλ =

∫
�

J 1γ ∗iJ 1
c ξ dι∗ρ +

∫
∂�

J 1γ ∗iJ 1
c ξ ι

∗ρ, (4.68)

∫
�

J 1γ ∗LJ 1
c ξλ =

∫
�

J 1γ ∗iJ 1
c ξ d�λ +

∫
∂�

J 1γ ∗iJ 1
c ξ�λ. (4.69)

We can see that

Ēλ = ι∗p1 d�λ, (4.70)

and semiholonomic Euler–Lagrange equations are equations for integral sections of D, such
that

dim X = 1
∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
= 0,

(4.71)

dim X > 1
∂cL̄

∂ys
− dc

dxj

∂L̄

∂ys
j

= 0.

Simple nonholonomic constraints. The next case to be discussed is such that the distribution
D is not integrable. Now, D is spanned by projectable vector fields ξ on Y however, at the
points of Q,J 1ξ need not be tangent to Q (J 1

c ξ need not be defined). This means that ξ ∈ D
need not have a counterpart Z in C that would be a symmetry of the induced contact ideal on
Q, and consequently, the Lie derivative along Z does not preserve decomposition of forms into
contact components. We conclude that:

• Integral sections of the distribution D are projections of admissible sections of Q.
• Admissible variations in Y are π -projectable vector fields belonging to D.
• Admissible variations in Y do not obey the principle of virtual displacements: deformations

of an admissible section γ of π by projectable ξ ∈ D induce deformations of J 1γ by
Z ∈ C such that ξ is a projection of Z; however, the deformations need not be holonomic
sections of Q (J 1γu 
= (J 1γ )u); the J 1γu even need not be sections of Q (ImJ 1γu need
not be a subset of Q). Instead, we have a nonholonomic principle of virtual displacements
that for simple nonholonomic constraints takes the form

(J 1γ )u = δu, γu = π̄1,0δu (4.72)
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(for all u ∈ (−ε, ε)), where {δu} is a deformation induced by a Chetaev vector field,
and {γu} by its projection onto Y. It can be briefly stated as follows: ‘every admissible
variation of derivation induces a variation in the space of events’.

• We cannot restrict the constrained action to a subset of admissible sections of π , since
deformations (−ε, ε) � u → φuJ

1γφ0u need not belong to the subset of holonomic
sections of the projection π̄1, so that the composition

u → δu = φuJ
1γφ−1

0u →
∫

φ0u(�)

δ∗
uι

∗ρ (4.73)

would not be defined.
• In the integrand of the action and the variation of the action one cannot forget about the

contact part (the restricted Lagrangian λ is not sufficient).

Summarizing, there are no significant simplifications available, and the situation is similar
to the general case: the constrained action is

S�(π̄1) � δ →
∫

�

δ∗ι∗ρ ∈ R, (4.74)

its variation induced by a π̄1 and π̄1,0-projectable Chetaev vecor field Z takes the form

S�(π̄1) � δ →
(

d

du

∫
φ0u(�)

δ∗
uι

∗ρ
)

u=0

=
∫

�

δ∗L
Z
ι∗ρ ∈ R, (4.75)

and can be restricted to constrained sections of the fibred manifold π : Y → X (admissible
sections of π ) to become

S�,Q(π) � γ →
∫

�

J 1γ ∗L
Z
ι∗ρ ∈ R, (4.76)

as in the general case. Note that, however, in this case sections belonging to S�,Q(π) are
integral sections of D.

4.5. A general nonholonomic first variation formula

The second (and more general) possibility is to consider a variational principle such that not
only variations, but also the system to be extremized is defined on the nonholonomic constraint
submanifold, without any reference to the ‘ambient space’ J 1Y . It is apparent that we need
to say what such an ‘inside Lagrangian system’ should be. Naturally we do require that if
an ‘inside system’ arises from a Lagrangian (or better from its Lepage equivalent ρ) on J 1Y

as ι∗ρ, then the results are reduced to the previous ones. Accounting all this, we can deduce
that the integrand of the action of an ‘inside nonholonomic variational principle’ cannot be a
horizontal form, or even a function on Q (a ‘Lagrangian’). It must be an n-form with similar
properties as Lepage forms in the unconstrained situation—for a constrained action we need
the concept of a constrained Lepage form [21]6.

Definition 4.19. Let Q ⊂ J 1Y be a nonholonomic constraint. We call a differential n-form ρ̄

on Q constrained Lepage form if p̄1 dρ̄ is π̄2,0-horizontal.

6 Indeed, there is no reason to assume a priori that the action of a differential form and of its horizontal part should
be the same; and as we have seen, this really is not the case, unless the constraint is semiholonomic. Moreover, for
the first variation formula we do need the Lepage property assuring that the action integral is related to a dynamical
form.

31



J. Phys. A: Math. Theor. 42 (2009) 185201 O Krupková

First-order constrained Lepage forms take the following coordinate expression:

if dim X = 1: ρ̄ = L dt +
m−k∑
l=1

∂L

∂q̇l
ω̄l +

k∑
a=1

Laϕ
a,

if dim X > 1: ρ̄ = Lω0 +
∑

J=(σ,i)∈J

⎛
⎝ ∂L

∂zJ
−

∑
(ν,p)/∈J

Lp
ν

∂gν
p

∂zJ

⎞
⎠ ω̄σ ∧ ωi

+
∑

(ν,p)/∈J
Lp

ν ω̄ν ∧ ωp + μ, (4.77)

where μ is an arbitrary at least 2-contact n-form on Q.
Let Q ⊂ J 1Y be a nonholonomic constraint, C the canonical distribution on Q.

Definition 4.20. By a Lagrangian system on a nonholonomic constraint Q we shall mean a
constrained Lepage form ρ̄ on Q.

From now on, the setting and procedure to obtain constrained action, variation of the
action, first variation formula and Euler–Lagrange equations is the same as in the case of
constrained ambient Lagrangian systems: only ι∗ρ should be replaced by ρ̄.

Note that the action, first variation and Euler–Lagrange equations cannot be obtained
provided only one function on Q (a ‘constrained Lagrange function’) is given: indeed, they
depend upon a choice of k + 1 functions L,La, 1 � a � k, if dim X = 1, respectively κ + 1
functions L,L

p
ν , where (ν, p) /∈ J , if dim X > 1.

It is worth noting that in this case a corresponding unconstrained system need not exist,
and if it exists it need not be Lagrangian. We refer the reader to [18] for more details on
non-Lagrangian systems on J 1Y that become (constrained) Lagrangian systems if subject to
an appropriate nonholonomic constraint. For illustration, we give an example of such a system
below.

5. Examples of nonholonomic variational systems

In this section we give examples of mechanical systems subject to nonholonomic constraints,
that are ‘constraint-variational’, however, cannot be obtained via the traditional variational
procedure. As we have seen, this concerns ‘true’ nonholonomic systems, i.e. systems that are
not semiholonomic (the constraints are nonintegrable).

In the examples below, we consider a nonholonomic constraint Q of codimension 1, given
by a single equation, in normal form denoted as

q̇m = g(t, qσ , q̇l), (5.1)

where 1 � σ � m and 1 � l � m − 1. Hence, we write g instead of g1, and similarly, ϕ

instead of ϕ1 for the corresponding constraint form; in this notation,

ϕ = −
m−1∑
l=0

∂g

∂q̇l
(dql − q̇ l dt) + dqm − g dt. (5.2)

Recall that main points characterizing the nonholonomic variational procedure (making
it different from the unconstrained, holonomic and semiholonomic ones) are the following:

• The constrained Lagrangian system, constrained variations, etc are defined on the
constraint manifold Q that represents the evolution space for the constrained system.
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• In place of a ‘constraint Lagrangian’ we shall have a 1-form
λc = L dt + L1ϕ, (5.3)

i.e. the constrained system will locally be represented by two functions, L,L1 (and as we
know, cannot be reduced to a single function) on Q.7

• Constrained variations are projectable (onto the base) Chetaev vector fields living on Q,
that are not prolongations of vector fields on the ‘space of events’ Y.
The examples are chosen in such a way that

• the first nonholonomic system arises from a Lagrangian system, subject to a constraint
linear in velocities, i.e. representable as a nonintegrable distribution on Y;

• the second nonholonomic system arises from a Lagrangian system, subject to a constraint
quadratic in velocities, i.e. not representable as a distribution on Y;

• the third example illustrates the most general possibility that has no counterpart in
‘constrained Lagrangian mechanics’. Namely, the original (unconstrained) mechanical
system is not Lagrangian; however, the arising nonholonomic system is variational as a
constrained system.

5.1. Example of a Lagrangian system subject to a linear nonintegrable constraint

We shall consider a free particle of mass m = 1 moving in R
2 along a curve the angular

coefficient of which is proportional to the time that has passed from the beginning of the
motion [28]. We have the fibred manifold π : R × R

2 → R with canonical coordinates
(t, x, y), and the first jet prolongation J 1(R×R

2) = R×T R
2 with coordinates (t, x, y, ẋ, ẏ).

The unconstrained system is given by the Lagrangian

λ = L dt = 1
2 (ẋ2 + ẏ2) dt (5.4)

on R×T R
2, and the constraint Q ⊂ R×T R

2 (the evolution space of the constrained system)
is given by equation

ctẋ − ẏ = 0, (5.5)

where c is a constant. Putting

ẏ = g(t, x, y, ẋ) ≡ ctẋ, (5.6)

we get the constraint equation in normal form. Now, (t, x, y, ẋ) are adapted coordinates on
Q. In these coordinates, the constraint form ϕ on Q, annihilating the canonical distribution C,
reads

ϕ = −∂g

∂ẋ
(dx − ẋ dt) + dy − g dt = −ct dx + dy. (5.7)

The canonical distribution C would be completely integrable if the ideal generated by the
1-form ϕ would be closed, i.e., if dϕ = −c dt ∧dx = ϕ ∧η for some 1-form η on Q. However,
an easy computation shows that no such η exists. This means that the constraint ideal is not
closed, i.e. the canonical distribution C is not completely integrable, i.e. the constraint Q is not
semiholonomic.

Let us compute admissible variations: the canonical distribution is spanned by the
following three vector fields:

∂c

∂t
= ∂

∂t
+

(
g − ∂g

∂ẋ
ẋ

)
∂

∂y
= ∂

∂t
,

∂c

∂x
= ∂

∂x
+

∂g

∂ẋ

∂

∂y
= ∂

∂x
+ ct

∂

∂y
,

∂

∂ẋ
, (5.8)

7 If we considered k constraints, the ‘constraint Lagrangian’ λc would contain k + 1 ‘Lagrangian functions’. In a
more geometrical setting, instead of a Lepage form (in mechanics a Cartan form �λ) in the integrand of the action
there appears a constraint Lepage form that cannot be determined by a horizontal form (a Lagrangian) on Q.
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so that we get (projectable onto R) Chetaev vector fields = admissible variations of the form

Z = Z0
∂

∂t
+ Z1

(
∂

∂x
+ ct

∂

∂y

)
+ Z2

∂

∂ẋ
, (5.9)

where Z0, Z1, Z2 are arbitrary functions on Q,Z0 = Z0(t).
In order to write the constrained action of the Lagrangian λ we shall need the Cartan form

�λ = L dt +
∂L

∂ẋ
(dx − ẋ dt) +

∂L

∂ẏ
(dy − ẏ dt) = −1

2
(ẋ2 + ẏ2) dt + ẋ dx + ẏ dy. (5.10)

The constrained system is the 1-form ι∗�λ. Locally it can be represented by a ‘constraint
Lagrangian’

λc = ι∗λ +

(
∂L

∂ẏ
◦ ι

)
ϕ = 1

2
ẋ2(1 + c2t2) dt + ctẋϕ. (5.11)

Now, we have the constrained action

S�(π̄1) � δ →
∫

�

δ∗ι∗�λ =
∫

�

δ∗
(

ẋ dx + ctẋ dy − 1

2
ẋ2(1 + c2t2) dt

)
∈ R, (5.12)

and, given a Chetaev vector field Z, the variation of the constrained action induced by Z

S�(π̄1) � δ →
∫

�

δ∗L
Z
ι∗�λ =

∫
�

δ∗L
Z

(
ẋ dx + ctẋ dy − 1

2
ẋ2(1 + c2t2) dt

)
∈ R. (5.13)

Restricting the domain of definition to holonomic sections, δ = J 1γ , we finally obtain

S�,Q(π) � γ →
∫

�

J 1γ ∗L
Z
ι∗�λ =

∫
�

J 1γ ∗L
Z

(
ẋ dx + ctẋ dy − 1

2
ẋ2(1 + c2t2) dt

)

=
∫

�

J 1γ ∗iZd

(
ẋ dx + ctẋ dy − 1

2
ẋ2(1 + c2t2) dt

)

+
∫

∂�

(
ẋ(1 + c2t2)

(
Z1 − 1

2
ẋZ0

)) ◦ J 1γ. (5.14)

To compute the constrained Euler–Lagrange equation it is sufficient to consider vertical
Chetaev vector fields. We obtain

h̄iZd
(
ẋ dx + ctẋ dy − 1

2 ẋ2(1 + c2t2) dt
)

= h̄iZ(dẋ ∧ dx + ct dẋ ∧ dy + cẋ dt ∧ dy − ẋ(1 + c2t2) dẋ ∧ dt)

= h̄(Z2 dx − Z1 dẋ + ctZ2 dy − c2t2Z1 dẋ − c2t ẋZ1 dt − ẋ(1 + c2t2)Z2 dt)

= − (ẍ(1 + c2t2) + c2t ẋ)Z1 dt, (5.15)

giving the constrained Euler–Lagrange equation

ẍ(1 + c2t2) + c2t ẋ = 0. (5.16)

It is worth noting that the canonical distribution C is, indeed, projectable onto a
nonintegrable distribution D of rank 2 on the evolution space R × R

2: D is annihilated
by following 1-form −ct dx + dy on R × R

2, or, equivalently, spanned by vector fields

ξ = ξ0
∂

∂t
+ ξ1

(
∂

∂x
+ ct

∂

∂y

)
. (5.17)

As we have seen, vector fields belonging to D such that ξ0 = ξ0(t) induce nonholonomic
variations of paths in R × R

2. We can also easily check that these vector fields do not admit
prolongation to Q. Computing the prolongation condition we obtain

d′
c(ξ1ct)

dt
− ∂g

∂y
ct = ∂g

∂t
ξ0 +

∂g

∂x
ξ1 +

∂g

∂ẋ

d′
cξ1

dt
+

(
g − ∂g

∂ẋ
ẋ

)
d′

cξ1

dt
, (5.18)
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i.e.,

ξ1c = cẋξ0. (5.19)

This is a linear equation in ẋ, having the only solution ξ1 = 0, ξ0 = 0. Hence, for no nonzero
vector field ξ ∈ D, the vector field J 1ξ along Q is tangent to Q, meaning that prolongations of
vector fields belonging to the distribution D do not induce variations of curves in the evolution
space Q.

5.2. Example of a Lagrangian system subject to a nonlinear constraint

The second example concerns a relativistic particle considered as a nonholonomic system
[17], illustrating a Lagrangian system subject to a nonlinear constraint. We have seen that
such a constraint cannot be represented by a distribution on the evolution space; however, is
modelled as a submanifold Q in the evolution space of the original (unconstrained) system,
with the canonical distribution C on Q.

We consider a fibred manifold π : R×R
4 → R and its jet prolongation π1 : R×T R

4 →
R, with global fibred coordinates denoted by (s, qσ , q̇σ ), 1 � σ � 4, where R

4 is endowed
with the Minkowski metric −(dq1)2 −(dq2)2 −(dq3)2 +(dq4)2. Let λ = L ds be a Lagrangian
on R × T R

4,

L = −1

2
m0

⎛
⎝(q̇4)2 −

3∑
p=1

(q̇p)2

⎞
⎠ + φσ q̇σ − ψ, (5.20)

where m0 > 0 is a constant (the rest mass of the particle), and (φσ ) = ( �A,−V ) and ψ

are functions on R
4, representing a 4-potential and a scalar potential, respectively. Let a

nonholonomic constraint Q in R × T R
4 be given by the equation

(q̇4)2 −
3∑

p=1

(q̇p)2 = 1, (5.21)

expressing the relativistic condition on the 4-velocity. Assume q̇4 > 0, and take for the
constrained system the evolution space

Q+ ⊂ Q ⊂ R × T R
4 : q̇4 = g(s, qσ , q̇1, q̇2, q̇3) =

√√√√1 +
3∑

p=1

(q̇p)2, (5.22)

with adapted coordinates (s, qσ , q̇l), 1 � l � 3.
The nonholonomic system on Q+ is given by the 1-form ι∗�λ, where �λ is the Cartan

form of the Lagrangian λ,

�λ = L ds +
∂L

∂q̇σ
ωσ = −

⎛
⎝1

2
m0

⎛
⎝(q̇4)2 −

3∑
p=1

(q̇p)2

⎞
⎠ − Apq̇p + V q̇4 + ψ

⎞
⎠ ds

+
3∑

p=0

(m0q̇
p + Ap)(dqp − q̇p ds) − (m0q̇

4 + V )(dq4 − q̇4 ds), (5.23)

and ι is the canonical embedding of Q+ into R × T R
4, q̇4 ◦ ι = g.

It is convenient to consider on R×T R
4 −{q̇4 = 0} other coordinates (s, ql, t, vl, q̇4), 1 �

l � 3, better adapted to a three-dimensional observer, defined as follows:

t = q4, vl = q̇ l

q̇4
. (5.24)
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In these coordinates, the constraint Q+ is given by the equation

q̇4 = 1√
1 − v2

, (5.25)

and the constrained Lagrangian system takes the form

ι∗�λ =
(

1

2
m0 − ψ

)
ds +

3∑
l=1

(
m0v

l

√
1 − v2

+ Al

)
dql −

(
m0√

1 − v2
+ V

)
dt. (5.26)

We shall find admissible variations. The canonical distribution C on Q+ is annihilated by
an 1-form

ϕ = −
3∑

l=0

q̇ l√
1 +

∑3
p=1(q̇

p)2
(dql − q̇ l ds) +

⎛
⎝dq4 −

√√√√1 +
3∑

p=1

(q̇p)2 ds

⎞
⎠

= dt −
3∑

l=0

vl dql −
√

1 − v2 ds, (5.27)

or, equivalently, spanned by seven vector fields

∂c

∂s
= ∂

∂s
+

(
g − ∂g

∂q̇l
q̇ l

)
∂

∂q4
= ∂

∂s
+

√
1 − v2

∂

∂t
,

∂c

∂ql
= ∂

∂ql
+

∂g

∂q̇l

∂

∂q4
= ∂

∂ql
+ vl ∂

∂t
, (5.28)

∂

∂q̇l
=

√
1 − v2

∂

∂vl
.

Let us write the constrained variational principle. The constrained action is

S�(π̄1) � δ →
∫

�

δ∗ι∗�λ

=
∫

�

δ∗
((

1

2
m0 − ψ

)
ds +

3∑
l=1

(
m0v

l

√
1 − v2

+ Al

)
dql

−
(

m0√
1 − v2

+ V

)
dt

)
∈ R. (5.29)

For a fixed Chetaev vector field Z ∈ C, the variation of the constrained action induced by Z is

S�(π̄1) � δ →
∫

�

δ∗L
Z
ι∗�λ

=
∫

�

δ∗L
Z

((
1

2
m0 − ψ

)
ds +

3∑
l=1

(
m0v

l

√
1 − v2

+ Al

)
dql

−
(

m0√
1 − v2

+ V

)
dt

)
∈ R. (5.30)

Restricting the domain of definition to holonomic sections, δ = J 1γ , and putting

Z = Z0 ∂c

∂s
+ Zl ∂c

∂ql
+ Ẑl ∂

∂q̇l

= Z0 ∂

∂s
+

∑
l

Zl ∂

∂ql
+

(∑
l

Zlvl + Z0
√

1 − v2

)
∂

∂t
+

∑
l

Z̃l
√

1 − v2
∂

∂vl
, (5.31)
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we get the first variation of the constrained action in the form

S�,Q(π) � γ →
∫

�

J 1γ ∗L
Z
ι∗�λ

=
∫

�

J 1γ ∗L
Z

((
1

2
m0 − ψ

)
ds +

3∑
l=1

(
m0v

l

√
1 − v2

+ Al

)
dql −

(
m0√

1 − v2
+ V

)
dt

)

=
∫

�

J 1γ ∗iZ d

((
1

2
m0 − ψ

)
ds +

3∑
l=1

(
m0v

l

√
1 − v2

+ Al

)
dql −

(
m0√

1 − v2
+ V

)
dt

)

+
∫

∂�

(∑
l

(Al − V vl)Zl −
(

1

2
m0 + ψ + V

√
1 − v2

)
Z0

)
◦ J 1γ. (5.32)

Taking for simplicity vertical Chetaev vector fields (Z0 = 0), we obtain the constrained
Euler–Lagrange equations by a straightforward computation. Similarly as in [17] we can
write them as equations for sections γ (s) = (s, t (s), ql(t (s)) in the form

d

dt

(
m0�v√
1 − v2

)
= �v × rot �A − ∂ �A

∂t
− grad V −

√
1 − v2 grad ψ − �v√

1 − v2

dψ

dt
. (5.33)

Finally, note that the vector fields ∂c/∂s, ∂c/∂ql ∈ C are not projectable onto R × R
4,

i.e., the distribution C on Q+ does not have a counterpart on R × R
4. This means that

nonholonomic deformations of admissible sections J 1γ passing in the evolution space Q+

induce deformations of sections γ of π (projections of the admissible sections) that are not
induced by vector fields on R × R

4.

5.3. Example of a constrained non-Lagrangian system

Our last example is an illustration of a mechanical system that, if unconstrained, is not
Lagrangian; however, under a nonholonomic constraint it turns into a constraint Lagrangian
in our sense.

Following [5], let us consider equations of motion

mẍ + βẋ − mG = 0, mÿ + βẏ = 0, (5.34)

describing a particle moving with friction in a gravitational field, and subject to the following
nonholonomic constraint (representing conservation of the mechanical energy)

1
2m(ẋ2 + ẏ2) − mGx = c, (5.35)

where c is a constant. The evolution space of the constrained system is the manifold
Q ⊂ R × T R

2, defined by the above equation. On Q+, where

ẏ = g ≡
√

2c

m
+ 2Gx − ẋ2 > 0, (5.36)

we obtain the constraint equation of motion

mẍ

(
1 +

ẋ2

g2

)
− mG

(
1 +

ẋ2

g2

)
= 0. (5.37)

This equation is variational: it comes from the nonholonomic variational principle

S�(π̄1) � δ →
∫

�

δ∗ρ̄ ∈ R, (5.38)
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where the constrained Lepage form reads as follows:

ρ̄ = −2mGx dt −
(

m

√
2c

m
+ 2Gx − ẋ2

)
ϕ, (5.39)

where ϕ is an 1-form, annihilating the canonical distribution C,

ϕ = −∂g

∂ẋ
(dx − ẋ dt) + dy − g dt = dy +

ẋ

g
dx −

(
ẋ2

g
+ g

)
dt. (5.40)

Substituting into ρ̄ we obtain the constrained action

S�(π̄1) � δ →
∫

�

δ∗
(

2c dt − mẋ dx − m

√
2c

m
+ 2Gx − ẋ2 dy

)
∈ R. (5.41)

Let us check that this constrained action provides the desired equation of motion.
Admissible variations (Chetaev vector fields) take the form

Z = Z0
∂c

∂t
+ Z1

∂c

∂x
+ Z2

∂

∂ẋ
= Z0

∂

∂t
+ Z1

∂

∂x
+

(
Z0

(
g +

ẋ2

g

)
− Z1

ẋ

g

)
∂

∂y
+ Z2

∂

∂ẋ
.

(5.42)

Note that also in this case the canonical distribution is not projectable onto R × R
2, so that

variations of sections in Q+ induced by Chetaev vector fields are not associated with variations
induced by some vector fields in R × R

2.
Writing the constrained first variation formula∫

�

J 1γ ∗L
Z

(
2c dt − mẋ dx − m

√
2c

m
+ 2Gx − ẋ2 dy

)

=
∫

�

J 1γ ∗iZd

(
2c dt − mẋ dx − m

√
2c

m
+ 2Gx − ẋ2 dy

)

−
∫

∂�

(2mGxZ0) ◦ γ, (5.43)

and taking vertical Chetaev vector fields, we can easily obtain the constrained Euler–Lagrange
equation:

h̄iZ d

(
2c dt − mẋ dx − m

√
2c

m
+ 2Gx − ẋ2 dy

)

= h̄iZ

(
−m dẋ ∧ dx − mG

g
dx ∧ dy +

mẋ

g
dẋ ∧ dy

)

=
(

mẍ − mG − mG

g2
ẋ2 +

mẋ2

g2
ẍ

)
Z1 dt = 0. (5.44)

Since the above relation holds for arbitrary Z1, we finally obtain equation (5.37).
Note that the constrained system in this example can be described either by the constraint

Lepage form ρ̄ (5.39), or by two ‘Lagrangian functions’

L = −2mGx, L1 = −m

√
2c

m
+ 2Gx − ẋ2. (5.45)

Since ∂L/∂ẋ = 0, we obtain in this case the constraint Lagrangian 1-form equal to ρ̄, i.e.

λc = −2mGx dt −
(

m

√
2c

m
+ 2Gx − ẋ2

)
ϕ. (5.46)
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